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Abstract—We propose a points-to analysis that can recover
targets for function pointer calls, virtual calls and method calls
for using in a static analysis. We use a flow-insensitive analysis,
and the analysis results are intended for flow- and path-sensitive
analysis which can improve the initial analysis precision within
a single function. We implemented the proposed approach in
a static analyzer for finding errors in C, C++, Go, Java and
Kotlin programs. The devirtualization algorithm is fast enough
and spends less than 6% of the total analysis time. It can work
for projects like Tizen 7 with 27.5 MLoc of source code.

Index Terms—static analysis; pointer analysis; devirtualiza-
tion; Java; Kotlin; C; C++; Go; SVACE; JVM; llvm.

I. INTRODUCTION

It is almost impossible to imagine the modern programming
without some form of virtual calls. Even some of the earli-
est computer languages featured virtual call mechanisms via
function pointers, and with advent of object-oriented program-
ming polymorphic classes’ behavior promoted the virtual call
mechanism from an occasionally useful tool to the basis of
software development. Therefore performing software static
analysis is heavily dependant on solving the devirtualization
problem. The solutions available in compilers or static analysis
suites are many and varying, and they are not always suitable
to the researchers’ needs.

The most general solutions are provided by a points-to anal-
ysis [1]. This analysis seeks to answer whether some pointer p
can or can not point to some place in memory q. Many of these
algorithms naturally support function pointers and can handle
C/C++ code, however handling languages such as Java and
Go, where calls are not resolved using function pointers and
virtual tables, will require instead tracking methods and bind-
ing them to object variables separately. One of the most well
known algorithms is Bjarne Steensgaard’s points-to analysis
[2]. This is a flow-insensitive, interprocedural algorithm that
works in O(N ·α(N,N)) where N is the program length and
α(m,n) is the inverse Ackermann function [3]. The algorithm
uses an equivalence based approach representing all program
variables in a disjoint set data structure [3] and joining them
based on a set of rules for different operations. This ensures
good complexity but sometimes produces poor results [1]. A
more granular approach is using binary decision diagrams
as presented in the work of John Whaley et al. [4]. This
algorithm has both context-sensitive and insensitive versions

and is inclusion based. The approach provides better results
and is designed to work with OOP-heavy languages like Java.
It can handle relatively big programs as authors tested it on
code bases up to 300K lines of code.

Despite all benefits points-to analysis isn’t well suited for
devirtualization. Not only do some researchers point out that
point-to analysis can perform worse than type analysis [4], but
the general expediency of such approach for devirtualization
is questionable. A points-to algorithm analyzes all dataflow in
a program and disregards information about types and related
virtual calls. Techniques such as Class Hierarchy Analysis [5]
can produce coarse yet meaningful results without analyzing
any program instructions. Simple extensions such as Rapid
Type Analysis [5] can produce even better results when
coupled with a very simple intraprocedural dataflow analysis.

All of the discussed approaches have drawbacks in preci-
sion, performance, or both. Moreover, existing papers focus on
devirtualization for one language at a time. Because SVACE
is expected to handle large projects (see VIII) in different
languages, presented approaches could not be applied as is.
In this paper we present the devirtualization approach for an
intermediate representation (IR) that supports multiple lan-
guages. The described algorithms are implemented in SVACE
— static analysis for finding errors in C, C++, Java, Kotlin,
Go programs [6–8].

II. INTERMEDIATE REPRESENTATION FOR DIFFERENT
LANGUAGES

SVACE uses the following intermediate representations as
an analyss input:

1) LLVM bitcode for C, C++
2) JVM bytecode for Java, Kotlin
3) ssadump tool output for Go

All these representations are then transformed into the
unified SVACE IR. This format is used by SVACE internally
and emulates most of memory model features of the languages
being analyzed. Similar to the LLVM IR, our intermediate
representation is SSA-based and does not include address of
operator.

SVACE has some common instructions for operations
present in all languages:
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Figure 1: Devirtualization algorithm steps

a = b ssa assignment
a = ∗b dereference
a = b.field object field read
∗a = b memory store
a.field = b object field write
a = cast b cast operation reinterpreting value of b
a = func(...) direct call of func with arguments
return a return a function value
a = (∗ptr)(...) function pointer call with arguments
a = ptr.func(...) method call for object with arguments

The first five instructions are common for all languages
analyzed by SVACE. Function pointer calls can only be found
in LLVM and Go languages. Method calls are specific to Java
and Go that do not rely on virtual tables unlike C++.

III. APPROACH TO DEVIRTUALIZATION IN SVACE

SVACE performs analysis in three phases:
1) Building a call graph. During this phase we construct a

graph out of all direct function calls.
2) Preliminary phase performing lightweight analysis on all

compilation units to gather additional information about
analyzed code before the main phase.

3) Main Phase, a summary-based function analysis that
uses the call graph information.

To implement devirtualization we have extended the pre-
liminary phase. We use the data gathered in the preliminary
phase to update the call graph before the start of the main
phase, and the data is also available in the main phase in a
special data structure.

The call graph must contain all edges to functions which
may be called. This is required to build a summary of each
called function before the function analysis on the main phase.
We also permit a situation when the graph contains edges to

functions that are never called. This is still useful information
for the analysis because the static analysis intent is to process
all possibly valid program states whereas a compiler is only
interested in places with single resolution [9, 10]. However, the
result size is still a concern from a performance standpoint.
SVACE will disregard devirtualization results for calls with
abnormally many candidates. From our experience more than
10 candidates per call do not produce any useful warnings but
slow down analysis significantly.

Because SVACE targets different languages with different
memory models and different language structures related to
virtual calls, the devirtualization algorithm needs to unify
available data into a single language-agnostic format. More-
over, SVACE is rapidly developing and adding support for new
languages, so the devirtualization algorithm must be easily
adaptable to all of them. To solve these problems and to fit into
the existing tool infrastructure a modular approach illustrated
in the fig. 1 is used.

Each compilation unit is independently analyzed by three
separate modules:

• Dataflow Module analyzes functions and builds a sum-
mary. During this step each function is processed in-
dependently. The dataflow analysis uses the notion of
aliases. Each variable can alias some concrete types,
e.g. a class, a structure, a function pointer, or can be
a transitive alias. A transitive alias is a reference to the
data outside of a function: parameters, return values and
class fields, but transitive aliases do not reference data
inside the same function. Each variable in the function
summary is aliased in such a way that it is independent
from other variables. Variables used as return values, call
parameters or field values are marked as useful to avoid
deletion later. For this purpose we use a set of instruction
rules that we describe with the following notation:
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ALIAS(x) set of aliases for variable x
USEFUL set of useful variables in a function
transitive(x) transitive alias for x
concrete(type) concrete alias for type
build(type) creating an alias

It is also important if some instruction argument is a local
or a global symbol. Local symbols can only be function
variables. A global symbol can be either a variable in
global scope, a field of class or a function argument.
This types of symbols are treated equally by dataflow
propagation algorithm treats them equally and uses the
same mechanism is used to update their values. Some
rules can not operate on global symbols, so the below
rules are non-exhaustive.

a = build(type)
ALIAS(a)← concrete(type)

a is local, b is local
a = b
a = cast b
∗a = b
ALIAS(a)← ALIAS(b)

a is global
∗a = b
c.field = b
return b
USEFUL← b

b is global
a = b
a = cast b
∗a = b
ALIAS(a)← transitive(b)
a = b.field
ALIAS(a)← transitive(field)

a = func(b1, b2, ...bn)
a = (∗ptr)(b1, b2, ...bn)
a = ptr.func(b1, b2, ...bn)
ALIAS(a)← transitive(ret of func)
USEFUL← ptr, b1, b2, . . . , bn

The rules corresponding to build are specific to each
language and are described later in the Sections IV,
V, VI. In general they are created at a place of object
instantiation or are produced by specific instructions that
create function pointers.

• Call Point Module finds all instructions that result in a
virtual call and creates a Call Point object representing
such a code location. Call Point objects may contain any
language-specific information internally. However, their
interface only provides information about the variable
containing an object or a function pointer and can resolve
a virtual call given the type aliasing information.

• Virtual Table Module reads all top level data and builds

the tables connecting types with their methods. This
module processes virtual tables for C++ (see Section IV)
and analyzes method definition for JVM and Go (see
Sections V, VI).

When the modules finish processing a compilation unit,
their joint information is used to prune redundant information
from the Dataflow Module. All aliases for types not present
in the Virtual Table Module can be removed. Using set of
useful variables obtained by the Dataflow Module and the Call
Point Module information, any variables that are not used to
resolve virtual calls, to update field values or are not used as
parameters or return values can be pruned. Because transitive
aliases, by definition, only alias these entities, but not other
variables inside a function, removing such variables does not
change the information describing a function.

The pruned module info can not be used yet to perform anal-
ysis on an entire program. Before starting a solver, all pruned
results are reduced into the single Solver Environment. During
reduction step the information from individual compilation
units is moved into a single container, and language-specific
updates are done for Virtual Table Modules (see Sections IV,
V, VI).

With all information extracted from compilation units and
combined into one language-agnostic representation, the final
algorithm step takes place.

Dataflow Propagation Algorithm

Require: queue = [ all function in environment ]
1: while queue is not empty do
2: f = next from queue
3: if not updates(function) has new concrete aliases

then
4: continue
5: end if
6: newUpdates = []
7: for each updated b in updates(f) do
8: for each value a← transitive(b) do
9: a← updates(f) for b

10: newUpdates← a
11: end for
12: if resolves virtual call a = (∗b)(...) or a =

b.func(...) then
13: add an edge to the call graph
14: updates(f)← a
15: end if
16: end for
17: for each f ′ adjacent to f do
18: updates(f ′)← newUpdates
19: add f ′ to queue
20: end for
21: end while

The Dataflow Solver processes one function at a time
(within a separate environment) and tries to propagate concrete
type aliases to all variables that have transitive aliases. These
transitive aliases come from other functions that either call
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this function or are being called by it. Therefore all dataflow
information can be propagated along call graph edges that
are being dynamically reconstructed by the Dataflow Solver
only using the summary built by the Dataflow Module earlier.
This can be efficiently done using an iterative approach similar
to [11], except that interprocedural phases are replaced by
updates of function summaries, which take only fraction of the
original time. To process a single function summary update, a
solver checks which arguments and return values are updated
and then updates variables as needed transitively aliasing
them. If nothing is to be updated then the algorithm skips
this summary. Otherwise the algorithm checks if the updated
concrete aliases can resolve some virtual calls and adds all
edges representing resolved virtual calls. This constitutes the
dynamic reconstruction of the call graph edges. Finally all
functions adjacent to the processed one are marked as changed
and are queued for update. Unlike [11] there is no need to
check if an alias has or has not been propagated through
the edge, because the summary analysis will not commence
if it was propagated earlier. It is obvious that concrete alias
sets propagated via this method are finite and thus form a
half lattice, which is required for the algorithm to terminate
[12]. What makes this approach different from classic iterative
algorithms is the call graph edge reconstruction. One may
think that adding new edges may interfere with the iteration
order, but it is not the case. On one hand, edges are always
added to the last analyzed vertex. On the other hand, the
number of edges in the call graph is finite. This means that
at some (finite) iteration each vertex will have the full set of
edges to continue propagation through. When the last edge is
added, the algorithm becomes equivalent to the one that does
not add new edges.

IV. DEVIRTUALIZATION FOR C FUNCTION POINTERS AND
C++ VIRTUAL METHOD CALLS

One of the most important targets for SVACE are C and C++
programs. They feature two kinds of virtual call mechanisms:
function pointers and classes with virtual methods.

Building virtual tables for C++ is straightforward. SVACE
intermediate representation contains all global variable dec-
larations and C++ virtual tables are just one type of these
declarations. An array of function pointers is supplied and
parsed to get signatures of the functions associated with a
single class. All function pointers inherited or declared by the
class itself are stored in one place and no further work to
find signatures is needed. Finally the Virtual Table Module
reads definition of all functions and builds a map from a
function to a signature. The map is used at the reduction
step of building environment to pair signatures acquired from
the virtual table definitions with functions themselves. This
ensures that if a function body and a class body are declared
in different compilation units then the function is still properly
represented in the virtual table.

Concrete type aliases in C/C++ code can be created in
two ways. For function pointer creation points in the C/C++
code such as void (∗ ptr )(...) = &foo; we emit the a =

cast b instruction is emitted in the IR. These instructions
contain function signatures and allow pairing function pointers
and their definitions the same way as for virtual tables.
Class instantiations are represented via direct function calls
func(a, b, ...) with a special flag. Constructor signatures allow
linking function calls with class type and creating the concrete
alias for a C++ class type.

V. DEVIRTUALIZATION FOR JVM-BASED LANGUAGES

All JVM-based languages from classic object-oriented Java
[13] and Kotlin [14] to functional Scala [15] share the same
platform and are compiled to the same bytecode that was
initially created for the Java language [16, 17].

In contrast to C++ JVM does not support function pointer
calls and the only virtual call mechanism is via virtual meth-
ods. Building virtual tables for JVM languages is different
to C++. Java does not have virtual tables for each class.
Some methods are described inside class declaration but
some will be inherited from superclasses. To find all class
methods the Virtual Table Module for JVM collects all virtual
method declarations and all superclasses for each class. During
reduction step of the building environment each virtual table
for the given class is extended with all methods that are not
overridden. Unlike C++ all methods are declared in the same
compilation unit as the class they belong to, and no additional
work is needed to connect class to its methods.

A call point of a virtual method in a JVM program is one
of several invoke∗ instructions [16] represented by a single
ptr.method(...) instruction in the SVACE intermediate repre-
sentation. Our devirtualization analysis does not differentiate
invocation methods as well and only stores information about
an object variable and a method signature.

Just like for C++, we have a special direct call instruction
flag for a JVM constructor call that can be used to create
concrete aliases for a JVM class type.

VI. DEVIRTUALIZATION FOR GO

Like C++, Go has function pointers and structure methods
that can produce virtual calls. But unlike C++, Go does not
feature all OOP constructs. Go does not feature inheritance,
replacing it with embedding mechanism that does not produce
polymorphic classes [18]. The only option to create poly-
morphic behavior in structures is to use interfaces, which are
implemented by all matching structures implicitly (also known
as duck typing). All this properties of the Go language make
a difference in handling method devirtualization compared to
C++ and JVM.

Unlike C++ and JVM, the special type of a = cast b
instruction is used to create a concrete alias for a Go type.
The SSAdump tool for Go has a make interface cast type that
represents a type change from a Go structure type to a Go
interface type. Because structures in Go can not be abstract
and can not be inherited, the initial type is the type of the
value and can be used to create the concrete type alias.

As Go features duck typing, any structure is a candidate
to be used through an interface. This would result in the big
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Virtual Method Table and would slow down analysis. One can
use interface definitions to remove entries for types that do
not match any interface. However, it is much more efficient to
remove all types that are never aliased in functions. This would
leave only tables for types that are cast to some interface and
would remove any non-polymorphic Go structures.

Handling method call points is done similarly to JVM and
handling function pointers is identical to C++ in SVACE IR.

VII. USING DEVIRTUALIZATION RESULTS

We propose the following scheme for using devirtualization
results which allows improving precision of devirtualization
analysis.

For function analysis we use symbolic execution with
merging analysis states at path joins. We provide the detailed
description at [8].

Devirtualization results for every external function and
pointer symbol return a set of destination functions. Since the
analysis used is flow-insensitive, it may have imprecise results.
But the main analysis is flow- and path-sensitive1. For pointer
symbols the analysis remembers the pointed destination pro-
cedures. In case of path joining, this analysis does not use
information from devirtualization and joins those sets itself
because the devirtualization algorithm cannot provide more
precise results.

Moreover, the data flow information is traversed over other
pointers, array elements and structure fields. Interprocedural
and intermodule analysis is used. All those features allow
propagating further the initial points-to information. Listing 1
is an example where the points-to information may be
improved on the main analysis phase. The devirtualization
analysis computed that ‘p2‘ can point to ‘func1‘ or ‘func2‘,
so ‘x‘ may be 10 or 0. Our analysis takes flow into account
and improves precision computing that pointer ‘p2‘ may point
only to ‘func1‘. As a result, the analysis can figure out that
code execution will definitely lead to buffer overflow.

1Our current version does not use path-sensitivity for improving devirtual-
ization but it is possible to implement.

i n t func1 ( ) { r e t u r n 1 0 ; }
i n t func2 ( ) { r e t u r n 0 ; }

t y p e d e f i n t (∗ F p t r ) ( ) ;
c h a r buf [ 1 0 ] ;

vo id foo ( F p t r p1 , F p t r p2 ) {
p2 = p1 ;

i n t x = p2 ( ) ;
buf [ x ] = 1 ; / / b u f f e r o v e r f l o w

}

vo id c a l l e r ( ) {
foo (& func1 , &func2 ) ;

}
Listing 1: Improving devirtualization results

If there is only one destination candidate, then the current
instruction will be replaced to the direct call of the candidate
function. In case of several candidates our analysis splits paths
and processes every candidate separately. After that all paths
are merged together.

VIII. RESULTS

To test algorithm and implementation in SVACE we an-
alyzed projects ranging in size from thousands to tenth of
millions of lines of code. To demonstrate effectiveness of the
presented approach in different usage scenarios, two different
machines were used. To analyze larger projects (fig. 2), a
server with 16 CPU cores and 256 Gb of RAM was used.
To analyze smaller projects (fig. 3), a PC with 4 CPU cores
and 16 Gb of RAM was used. The number of resolved virtual
calls is calculated after removing calls with abnormally many
candidates. Number of virtual call points includes calls to
standard library and dependencies, which are not captured by
SVACE and thus candidates are not present in intermediate
representation. To illustrate the algorithm performance, we
show relative ratio of devirtualization to total runtime of all
SVACE components. Results demonstrate that our approach

Project
Source
Language Size (MLOC)

Virtual Calls
Resolved

Number of Virtaul
Call Points

Algorithm Runtime
(seconds)

% of Total
Analysis Time

Tizen 7 C++ 27.5 60491 387561 360 1.5%
Tizen 2.3 C++ 6.6 8567 57005 32 <1%
Android 12 Java 33 94291 295793 184.1 3%

Figure 2: Results for large projects.

Project
Source
Language Size (KLOC)

Virtual Calls
Resolved

Number of Virtaul
Call Points

Algorithm Runtime
(seconds)

% of Total
Analysis Time

NanoVM OPS Go 24.1 1010 9250 4.8 <1%
Kodi C++ 879.6 3629 31263 130 1%
Recaf Java 40.0 551 6440 4.4 <1%

Figure 3: Results for small projects.
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works well both for big programs relying on virtual calls
heavily as well as for smaller programs that do not rely
on virtual calls as much. Moreover, execution time of the
devirtualization algorithm becomes significant only on the
biggest codebases analyzed by SVACE.

IX. CONCLUSION

This paper introduces a devirtualization algorithm based
on type aliasing. This algorithm achieves a couple of im-
portant goals. It can support multiple different programming
languages. It can analyze projects sized from tens of thousands
to tens of millions of lines of code in a reasonable time. And
it can tightly integrate with flow- and path-sensitive analysis
to provide more precise results.
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