
Static analyzer for Go
1st Alexey Borodin

ISP RAS
Moscow, Russia

alexey.borodin@ispras.ru

2nd Varvara Dvortsova

ISP RAS
Moscow, Russia

vvdvortsova@ispras.ru

3rd Sergey Vartanov

ISP RAS
Moscow, Russia

svartanov@ispras.ru

4th Alexander Volkov

ISP RAS
Moscow, Russia
volkov@ispras.ru

Abstract—This paper describes a static analysis tool for soft-
ware defects detection in source code written in Go language.
We developed a fast lightweight AST-based analyzer (GOA) to
support detection of syntactic-level issues (linter) and a powerful
interprocedural summary-based analyzer (SVENG) with its own
intermediate representation.

Index Terms—interprocedural static analysis, golang, symbolic
execution, data flow analysis, path sensitive analysis

I. Introduction
Go is an efficient and popular programming language.

According to the TIOBE index [1], it is one of the top 20 most
popular languages. However, the language is relatively young
(the initial release dates 2012) and as far as we know there
are still no tools based on deep interprocedural static analysis
to detect common software error types in Go programs.

SVACE static analyzer was initially developed as a tool for
automatic software defect detection in programs written in
C/C++ and subsequently was extended to support Java and
Kotlin. In this paper we present the new functionality, that
has been recently introduced to SVACE to analyze programs
written in Go. We will describe SVACE solely from the Go
analysis perspective. All the specific features related to other
languages support are beyond the scope of the present paper.

SVACE toolchain incorporates several tools and modules to
intercept the original build of a software project, produce its
models (representations) for the subsequent analysis and detect
program defects of various kinds and levels of complexity.

SVACE combines two analysis frameworks (for the particu-
lar analyses and checkers implemented in SVACE):

• GOA1 performs a lightweight analysis, which uses an
abstract syntax tree (AST) as a representation of the
source code under analysis and is intended for syntactic-
level defect detection.

• SVENG2 tool is the main part of SVACE. It performs a
significantly more powerful and heavy control-flow and
data flow based analyses with its own specific intermedi-
ate representation SVACE IR (we describe it in section IV)
of the program under analysis; it performs not only intra-,
but also interprocedural analysis.

In order to build AST and SVACE IR we use modified
SSADUMP, a tool to produce a representation in single static

1short for Go analyzer
2short for Tool Engine

assignment (SSA) form for a Go program. The original tool
is a part of set of golang.org/x/tools packages. While
parsing a program source code SSADUMP builds its native AST
for Go and we use it in GOA. We patched SSADUMP SSA
generation to produce the data for SVENG to build SVACE
IR.

Fig. 1 gives an overview of SVACE analysis process. On
the build stage SVACE BUILD CAPTURE tool runs an original
build, intercepts the invocations of Go compiler and uses the
captured information about these invocations to launch mod-
ified SSADUMP utility with GOA for each captured module.
SSADUMP generates both AST and the input data for SVENG,
passes the produced AST to GOA and stores the data for
SVENG for further analysis. On the the subsequent analysis
stage SVENG uses this data to build SVACE IR and he full call
graph. SVACE history server imports the warnings produced by
both analyzers and allows to browse them through the SVACE
web interface.

More details on the specific changes were made to adapt
SVACE for Go language can be found in [2]. The focus of this
paper is the description of the full SVACE toolchain and the
current state of the analyses implemented in SVACE and the
way they work in the case of Go.

II. SVACE build process
As it was mentioned above, SVACE BUILD CAPTURE tool

runs the original build, intercepts all the running processes and
captures the important commands they execute (original build
commands such as go build, go install, go get) and
their arguments, since it is crucial to reproduce the original
build structure for SVACE front-end. It is essential not to
interfere with the original build process, so that its results are
the same as of the original build process without any external
interception. More information about the interception of the
build process can be found in [3].

A compilation unit in the case of Go language is a package,
not a single file and the original SSADUMP operates with the
data at the package level. We preserved this approach in the
modified version of it we use in SVACE.

For each Go package the modified SSADUMP produces a
file, where it stores the data collected for the source code
of this package. This data includes information about types,
global variables, constants, and functions. The data for each

Original
build process

BUILD CAPTURE
tool

Source
code

SSADUMP
(modified)

SVACE IRAST

SVENGGOA

Warnings

Fig. 1. Analysis diagram

function contains information on local types, symbol table and
instructions, adapted from the original SSA representation.

In addition for each Go package the modified SSADUMP
generates a file with the extracted information on function
calls. It allows to speed up the construction of the full call
graph for SVENG, required by the summary-based analysis.

We use JSON format for both these file kinds.
When BUILD CAPTURE encounters a use of single com-

pilation command for several packages, it identify package
dependencies, filters this set, and runs modified version of
SSADUMP for the resulting set of packages to produce interme-
diate representation. SVACE BUILD CAPTURE filters out the
standard Go library and the previously built packages. It uses
lock files to avoid processing package more than one time.
These lock files are unique for package name and working
directory name (last one is essential if replace directive is
used).

An important performance issue is analysis of 3rd party
code. Since 1.6 Go provides vendoring feature to manage
dependencies. It uses vendor directories to collect 3rd party
packages code. We provide an option to ignore the source
code placed in them. Use of this option may significantly
speed up SVACE build process and the subsequent analysis.
This however limits the depth and quality of the analysis and
reduces the precision of its results (the reported warnings).

III. Goa
GOA AST analyzer was implemented on top of SSADUMP.

GOA gets as input a list of AST representations (each AST)
for each file of Go package. Next, detectors are launched
in parallel over the AST and SSA representation. All AST
detectors are intraprocedural.

Below we list some of the detectors we implemented in
GOA:

• UNSAFE_TYPE_ASSERTION detects potential runtime
errors, which can be trigger by type assertion expressions.

• UNSAFE_TYPE_CONVERSION detects possible integer
overflow in type conversion operations.

• LOOPVAR_IN_CLOSURE detects the free variables cap-
tured in closures, which could be captured by reference.
go vet [4] is able to detect a similar warning, but our
version supports a more tricky case: it reports a warning
for a method with pointer receiver, when it is called in a
goroutine.

LOOPVAR_IN_CLOSURE detector performs a depth-first
traversal of the analyzed AST.

1) When the detector reaches a loop, it begins to collect
free variables of the loop

2) Finds a go or defer instruction node
3) There are two cases:

a) if the called function is anonymous and how it
captures the free variables (Listing 1.)

b) if the called function is a method with pointer
receiver (Listing 2.)

func(values []int) {
var wait sync.WaitGroup
wait.Add(len(values))
for key, value := range values {

go func() {
/* LOOPVAR_IN_CLOSURE */
fmt.Println(key, value)
wait.Done()

}()
}
wait.Wait()

}

Listing 1. The example for the anonymous function.

func (v *val) MyPtrMethod() {
fmt.Println(v.String())

}

func test(values []val) {
for _, val := range values {

/* LOOPVAR_IN_CLOSURE */
defer val.MyPtrMethod()

}
}

Listing 2. The example for the method with pointer receiver.

IV. SVENG
SVENG provides a framework for deep interprocedural

flow- and context-sensitive analysis and utilizes it in the
detectors. In the case of Go analysis SVENG gets as input
the files produced by modified SSADUMP and builds SVACE
IR—its own low-level intermediate representation format and
it is the same for different languages. The latest SVACE version
supports C, C++, Java, Kotlin, and Go. More information on
analysis for other languages can be found in [5–8].

SVACE IR supports the following types: integers, strings,
floats, function pointers, structures, arrays, tuples. SVACE
IR uses partial SSA form to represent a function. It has
the following instruction classes: arithmetic, pointer handling
(reading, writing, shifting), function calls by name or by
pointer, assignments, control flow (goto and conditional goto),
function manipulations (defer, make closure), specific built-in
types support (channels, tuples, maps, slices).

SVENG analysis phases are the following:
1) Call graph construction
2) Preliminary phase
3) Main phase
First, SVENG reads a local call graph produced by modified

SSADUMP for each analyzed Go package. The call graphs are
read in parallel, since there is no need for any synchronization
for that. Then the local call graphs are merged into a call graph
for the whole project.

The merged call graph contains two types of vertices:
function definitions and function calls. A function call is
identified by the name of a called procedure. In the case of
intra-package call the target (the callee) of a call can be defined
easily.

Then SVENG builds the linked call graph. This graph
contains only function definition vertices. The linking resolves
function calls through their package-qualified function names.

Then a preliminary phase is run (IV-A). This phase is
designed to be fast and it performs only simple intra-module
(independent for each Go package) kinds of analysis. Its main
goal is to collect information about global variables), array
sizes, goroutines of each package for the subsequent phase.

Finally, SVENG runs the main phase of the analysis. It
analyzes each procedure only once and creates a summary for
it to support interprocedural analysis. The summary describes
specific features of a procedure’s behavior and the analysis
will use it when it will track the calls to this procedure.
The described summary-based approach has a good scalability,
because there is no need to re-analyze the callee procedure for
each call to it, since only its summary is used.

Section IV-B describes intraprocedural analysis. It is based
on symbolic execution with state merging. In addition to it
analysis of a particular function has data flow stage, which
will be described at IV-D. Inter-procedural analysis consists
of summary creation and applying it to caller context. Both
operations will be described in section IV-C.

Our analysis is flow- and path-sensitive. It is sensitive to
(is able to track) structure fields and array elements with
constant indexes. SVENG performs global analysis for the
whole program that means that calls to functions from other
packages are also taken into account.

As far as we know only SVACE performs such full and deep
analysis for Go programs.

A. Preliminary analysis
Preliminary analysis is intended to provide an additional

information to the main phase, which can be collected through
the simple traverse of all the program instructions.

Every module is analyzed independently in parallel. For
every module SVENG analyzes global variables and then step
by step every procedure in the module. Instructions of every
procedure are analyzed in topological order. Every instruction
is visited only once. We do not use any alias analysis at this
phase.

Currently we implemented the following analyses:
• collect information on the call contexts for the main

phase.
• Analysis for global constants. Here we collect informa-

tion about global variables that assign only to the same
constant values.

• Uninitialized global variables.
• Goroutines analysis. Collect function that are used as

goroutines.
• Buffer size analysis. For buffers with constant size we

collect information about its size and location where
buffer is created.

SVENG is able to work without the preliminary phase, but
it allows to get more information about the program at low
cost3.

B. Intraprocedural analysis
Procedure analysis during the main phase uses symbolic

execution with state merging. Analysis gets control flow graph
(CFG) of the function as an input. To simplify the analysis
our CFG does not have any branching instructions. Instead of
them it uses split nodes (vertex with one input edge and two
output edges) and linear assume instructions at their outgoing
edges. The semantics of it is that only the path where assume
condition is hold is executed.

Abstract states are associated with the CFG edges. For each
instruction, the analysis generates an abstract state associated
with an output edge by using an abstract state associated with
an input edge. For join points analysis generates the output
state that describes all possible paths.

The loop analysis we use is not sound. During loop analysis
several heuristics are used to model all the possible execution
paths in strongly connected components (SCC) of CFG. It is
possible that analysis incorrectly models properties for some
paths if these heuristics work wrong. Several iterations of
strongly connected SCC are performed. Current version uses
two iteration for a loop body. After the end of loop analysis
states for all iterations at output edges of SCC are merged.

All analyses and checkers are run simultaneously. It allows
us to reduce both analysis time and memory usage. The
analysis time is also reduced due to the fact that properties
common to all checkers are analyzed only once. In most
cases the state at the input edge of an instruction can be
released immediately after its processing, this approach allows
to significantly reduce memory consumption. The analysis
does not need to store all states. It is enough to store current
input state, the states at all input edges for not visited joins
and out states for analyzing SCC.

35.1% of analysis time (VI)

SVENG uses an abstraction called “value identifier” to
model the values stored in variables and other memory lo-
cations. We will refer to it as value id in this paper. Two
variables are matched with one value identifier, if they have
the same values during execution. Analysis builds variable-
to-value map for every CFG edge to map variables to value
ids.

SVENG models the properties of data it tracks through the
so-called “attributes”. Most of the attributes are associated
with value ids. Attributes can also be described using value
ids.

Associating attributes with value ids has advantage that in
most cases attributes are not changed. For the following assign
instruction:
a := b

Both variables have the same value id and and no attribute
changes are required. Analysis needs only to update variable-
to-value map.

Our alias analysis is also based on value ids. Its design is
very simple. We use a heuristic that all the values of function
input parameters are not aliases and, moreover, all the called
functions return non-aliased results. Since it is usually true for
the majority of the functions, it helps the analysis to produce
precise alias results in most cases. Penalty for this is unsound
results for the cases where these heuristics are not hold.

Value ids themselves have the following types:
• Pre-values—values for parameters, globals. Those values

were created before function start.
• Constant value ids
• Join value ids—values that were created during path

merging. They store information about values at every
path.

• Shift value ids.
• Dereference value ids—results of dereferences. Those

derefernced value ids are modeled as separate values
stored in non-aliased original value ids.

• Internal value ids—other value ids that denote values
created after function start.

SVENG runs alias analysis simultaneously with all its other
analyses and checkers. Some of value ids are references
(reference values). Reference is a value id for a pointer
for which SVENG models memory. Current SVENG version
models memory for pre-values and internal value ids and
doesn’t model for join value ids. For references SVENG
makes strong updates. For other assignments through pointers
SVENG makes only weak updates 4.

C. Inter-procedural analysis
We use a summary-based analysis, it implies implementa-

tions for the following two operations:
1) create summary—after an analysis of a function SVENG

gets abstract state on the exit edge and uses it to create
a summary

4Even for weak updates information may be recovered by use of definition
graph, which will be described at IV-F

2) apply summary—for each call to a known function a
corresponding summary is translated to the caller context

Summaries are designed to be small enough. That’s why
we use several thresholds to limit them. The main threshold
is the number of value ids in a summary, this threshold in
the current version is 250. For summary creation we use the
following algorithm:

• Calculate a visible value ids set, add initially arguments
and return value(s) to it.

• Find the values dependent on those that are in the visible
set. Dependent value is a value that may be created from
original value by dereference or shifting. Add those de-
pendent values if result set size is less than the threshold.

• Repeat the algorithm until no new values are met.
• For all visible set run handle annotate. Every interpro-

cedural checker must propagate values by implementing
this handler. This handler is run for each value id and
attribute pair. A checker gets an attribute value from the
function exit state and must produce an attribute value in
the summary.

Our analysis is context-sensitive. A summary for a function
is applied while analyzing each call to it. If a function call
is located in a loop, then a corresponding function summary
will be applied at each analysis iteration.

While applying a summary at a function call point SVENG
needs to translate the value ids used in the summary to the
value ids of the caller context. It builds a value id multimap for
that. This multimap is initialized with value ids for the formal
and actual arguments of the called function. Then this map is
filled for all the elements in summary using the dependency
relation.

SVENG executes apply handler for all the corresponding
value ids. Again, as in the case of annotate, it is the
responsibility of every interprocedural checker to provide its
specific implementation for this handler. Handler apply is
called for every value id and attribute pair. Each checker has
an attribute value of the state at the input edge of the processed
call instruction and an attribute value from the summary and
implements its specific algorithm to generate a new attribute
to put it to the state at outgoing edge.

D. Data-flow analysis
Unreachable code detection was implemented as a part of

conservative data-flow analysis of DFA stage [9]. SVENG
runs this stage before the main analysis (symbolic execution)
of each function. The key reason why it was implemented
within this stage is the lack of accuracy of the main analysis.
This analysis marks unreachable edges of the control flow
graph. An unreachable edge dramatically affects all other
analyses, therefore non-conservatism in this case would lead
to significantly worse results.

In addition DFA analysis stage collects an auxiliary infor-
mation for the symbolic execution stage (like inductive vari-
ables, live variables, loops with a constant iterations number).

DFA stage incorporates only a small number of analyses.
It does not have alias analysis, it models only the variables

which addresses were not taken. The amount of the tracked
and the collected data is much smaller than on the symbolic
execution stage. As a result it is fast. In average DFA takes
about 4.3% of total analysis time (VI).

Like the preliminary phase it is optional and may be
removed.

E. Checkers
SVENG provide the detectors for the following classes of

errors:
• nil pointer dereference
• integer overflow
• unreachable code
• buffer overflow
• division by zero
• improperly using data from external sources
• resource leaks
Most of these checkers work for other languages too. SVACE

core allows to implement source-sink checkers for variable
values effectively. We describe a typical scheme for path-
sensitive source-sink checker in section IV-F. Path-insensitive
checkers can use binary, ternary attributes and interval at-
tributes. Consider “and-boolean” attribute:

• for source point it is set up to true
• at join points result value is true if it is true for all input

edges
• at sink point (which also may be modelled by other inter-

procedural attribute) checker emits warning if the value
is true

In some cases source-sink scheme is not enough. It may be
supplemented with information from preliminary phase (that
current procedure is used as goroutine) or from DFA (about
loop invariants, live variables).

F. Path-sensitive analysis
Path sensitivity of the analysis is based on value ids.
For every value id, SVENG stores its definition which

contains information about how and where it was created.
SVENG value id definition types are as the following:

• Constant definition—value is a constant,
• Expression definition—value is in the form of a = b

⊗
c,

where all a, b and c are value ids and
⊗

is operation
(plus, minus, bit shift and etc.)

Those value id definitions form a value id definition graph
for all created value ids.

Path-sensitive analysis uses definitions and conditional at-
tributes.

Conditional attribute is a formula with trace information.
Value ids are used as variables in those formulas. It has
advantage that formulae remain the same even after assigning
values to variables.

SVENG has special attribute Ness, which describes neces-
sary conditions that some location is reachable. This attribute
is filled by the following rules:

1) for path merging we use disjunction for attributes at
input states

2) for assume-instruction we add conjuction with assume
condition to value in input context

Below we describe a simple path-sensitive source-sink
checker. It has a conditional attribute Src as an example. At
a source instruction it sets attribute Src to value True for all
the corresponding value ids, which means that these properties
for the modeled value are hold at this point.

Then attribute is changed only at path merging points using
the rule:

Srcout = Ness1 ∧ Src1 ∨Ness2 ∧ Src2

At the sink location the checker creates a formulae Src ∧
Ness for the error issue candidate and runs SMT-solver. If the
solver returns SAT then this error is feasible and the checker
emits a warnings.

Before adding formula to SMT solver SVENG collects all
the used value ids and then for each used value id transitively
finds definition. Then all the definitions are converted to a for-
mulae and added to the resulting error formula as conjunctions.
Use of definitions has an advantage that they do not depend
on the current point and are true for the whole procedure.

Solver is run only if checker has a suspicion that an error is
possible: source location is reached and variable has value id
with non-default attribute Src. Solver is used only to suppress
infeasible paths.

Checkers may use more than one conditional attribute: they
may create attributes for sink too.

Below is a synthetic example of a nil dereference error:

func foo(a int, p *int) {
var isNil bool

if a < 10 {
if p != nil {

isNil = false
}

}

if a < 20 && !isNil {
*p = 1 //error

}
}

Listing 3. nil dereference

In this example an initialization of variable isNil is
missing. Therefore the variable value is false. Then if
pointer p is not nil than this variable is set up to false.
value. Before dereferencing pointer p flag isNil is checked.
But since it has only nil assignments it is always true.
So if comparison for p is not redundant than nil pointer
dereference is possible.

For the example, SVENG creates 6 value ids: 1 value ids
for variables a, p and isNil, and 3 value id for location
*p. Variables a and p do not have assignments. Variable
isNil has 2 assignments to the same value. Because of that

SVACE generates only 1 value id for it. For location *p SVACE
generates 3 values:

1) value before function start (”pre-value”)
2) constant 1
3) join value id for the last join
Attribute NilCond is used to denote the values that were

positively compared to nil. At assume instruction p ==
nil SVENG creates condition true for this attribute for value
id p (NilCond(p) = true). Path merging adds a conjunction
with reachability attribute Ness. Reachability attribute denotes
the conditions which are true, if the current location is
reachable.

For the dereference of p SVENG checks attribute NilCond.
Since it is not false, an error condition is created. In the
current case it is a < 10 ∧ p = 0 ∧ a < 20 ∧ isNil = ⊥. The
resulting formula is passed to SMT-solver which establishes
that the formula is satisfiable.

Path-insensitive checkers without conditional attributes also
may use SMT-solver. First of all they may check attribute
Ness to filter out warnings at infeasible paths. Another option
is to calculate error condition and check, if it is SAT at the
current location. For example, for buffer overflow they may
create condition that index is greater than a buffer size.

V. Other tools
We found only linter-like tools for static Go programs anal-

ysis: STATICCHECK [10], GO-CRITIC [11], ERRCHECK [12].
We found that famous analyzer COVERITY [13] supports

Go, but we could not find any details.
Tool GOCATCH [14] performs the whole program analysis to

find concurrency bugs. The tool has similar IR which is based
on SSA package [15]. It has good false positive rate and can
find many real bugs. It is hard to compare directly this tools
with SVACE since scope of our warnings barely intersects.
GOCATCH doesn’t have good scalability like SVACE. Analysis
of big project Kubernetes takes 25.6 hours, while SVACE needs
only 14 minutes.

VI. Results
For the estimation of SVACE results we used it to analyze

10 open-source projects. In total, SVACE detected 39066
warnings. A review of an unfamiliar source code and com-
munications with its developers might take an excessive time,
so we have chosen 25 bugs to describe in-depth, and reported
them to the projects developers. 4 bugs have been fixed. 5
bugs have been rejected as minor. 1 bug was false positive.

Listing 1 demonstrates a previously unknown bug in
PDFCPU. There is a pointer dereference after its comparison
with nil. The variable r is used after a comparison with nil,
and it means that if r is equal to nil, it will trigger panic.

func getR(d Dict) (int, error) {
r := d.IntEntry("R")
// comparison with nil
if r == nil || *r < 2 || *r > 5 {

if *r > 5 { // dereferenced

isNil = false

a < 10a >= 10

p != nilp == nil

isNil = false

a < 20a >= 20

!isNilisNil

*p = 1

Ness(·) = (ã < 10)

Ness(·) =
(ã < 10 ∧ p̃ 6= 0)Ness(·) =

(ã < 10 ∧ p̃ = 0)
NilCond(·, p̃) = >

NilCond(·, p̃) = (ã < 10 ∧ p̃ = 0)

Ness(·) = (ã < 20)

Ness(·) =
(ã < 20 ∧ ¬˜isNil)

Fig. 2. Example control-flow graph

return 0, errors.New("pdfcpu:
PDF 2.0 encryption not supported")

}
return 0, errors.New("pdfcpu:
encryption: \"R\" must be 2,3,4,5")

}
return *r, nil

}

Listing 4. The previously unknown PDFCPU bug.

PDFCPU team’s patch is shown in Listing 2.
func getR(d Dict) (int, error) {

r := d.IntEntry("R")
if r == nil || *r < 2 || *r > 5 {

if r != nil && *r > 5 {
return 0, errors.New("pdfcpu: PDF
2.0 encryption not supported")

}
return 0, errors.New("pdfcpu:
encryption: \"R\" must be 2,3,4,5")

}
return *r, nil

}

Listing 5. A patch of pdfcpu bug.

Table I contains the data on build and analysis time for 10
open-source projects, their total source code size 1477 KLOC.
Table II contains the data for these projects, including the
project sizes in the lines of code and the size of the generated
IR. In average SVACE build and analysis last 10 times longer
than an original build.

Table III contains the data about different phases of SVENG
analysis. Columns “Total function analysis time” and “DFA
time” contain data about analysis time for all functions with
thread summing. Other columns contain real time. DFA stage
takes about 4.3% of function analysis time in average. Pre-
liminary phase takes 5.1% of total analysis time. Most of this
time is spent to reading IR.

Tables IV, V, and VI contain data for project KUBERNETES.
It is the biggest open-source Go project we have found. The
size of the project is nearly 2 million source lines and more
than 3.7 million lines with its dependencies. SVACE build and
analysis take 7.5 and 14.5 minutes correspondingly. An ability
to analyze such big projects in a reasonable time proves a good
scalability of our tool.

VII. Conclusion
We have described a way to implement static analyzers for

the Go language. Our approach demonstrates good scalability
and allows us to detect real errors in big Go projects.

The tool we have developed combines two types of an-
alyzers and a build interception utility. Together they are
able to detect a wide variety of software defects, ranging
from typos and code-style problems to source-sink errors (like
nil pointer dereference, division by zero) and more complex
erroneous dataflow patterns, such as buffer overflows and
resource leaks.

The tool has been tested on open-source Go projects and
has demonstrated the ability to efficiently detect errors in an
acceptable amount of time.

References
[1] TIOBE Index. 2021. URL: https://www.tiobe.com/tiobe-

index.
[2] I.V. Bolotnikov and A.E. Borodin. “Interprocedural

Static Analysis for Finding Bugs in Go Programs”.
In: Programming and Computer Software 47.5 (2021),
pp. 344–352.

[3] A.A. Belevancev, A.O. Izbyshev, and D.M. Zhurikhin.
“Monitoring program builds for Svace static analyzer”.
In: System administrator 7-8 (2017), pp. 135–139.

[4] Go vet main page. https : / / golang . org / cmd / vet/.
Accessed: 2020-10-9.

[5] V.P. Ivannikov et al. “Static analyzer Svace for finding
defects in a source program code”. In: Programming
and Computer Software 40.5 (2014), pp. 265–275.

[6] A. Belevantsev et al. “Design and Development of
Svace Static Analyzers”. In: In 2018 Ivannikov Memo-
rial Workshop (IVMEM) (2018), pp. 3–9.

[7] A.E. Borodin et al. “Searching for tainted vulnerabilities
in static analysis tool Svace”. In: Proceedings of the
Institute for System Programming of the RAS 33.1
(2021), pp. 7–32.

[8] A.E. Borodin and I.A. Dudina. “Symbolic execution
based intra-procedural analysis for search for defects”.
In: Proceedings of the Institute for System Programming
of the RAS 32.6 (2020), pp. 87–100.

[9] Mulyukov R.R. and Borodin A.E. “Using unreachable
code analysis in static analysis tool for finding defects in
source code”. In: Proceedings of the Institute for System
Programming of the RAS 28.5 (2016).

[10] StaticCheck main page. https://staticcheck.io. Accessed:
2021-09-01.

[11] go-critic main page. https://github.com/go- critic/go-
critic. Accessed: 2021-09-01.

[12] errcheck main page. https://github.com/kisielk/errcheck.
Accessed: 2021-09-01.

[13] Coverity 2021.03: Supported Platforms. 2021. URL:
https://sig-docs.synopsys.com/polaris/topics/r coverity-
compatible-platforms 2021.03.html.

[14] Ziheng Liu et al. “Automatically detecting and fixing
concurrency bugs in go software systems”. In: Pro-
ceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems. 2021, pp. 616–629.

[15] Package SSA. https://godoc.org/golang.org/x/tools/go/
ssa. Accessed: 2021-09-01.

Appendix A
Table of results

The data is for Ubuntu 20.04, RAM: 32 GB, CPU: Intel Core i7-7700 3.60GHZ.

TABLE I
EVALUATION OF BUILD AND ANALYSIS TIME OF 10 PROJECTS

Project (https://github.com/*) Original build
time (s)

SVACE build time
with GOA (s)

SVACE build time
without GOA (s)

SVENG analysis
time (s)

taskctl/taskctl 4.421 18.378 18.378 60.534
pdfcpu/pdfcpu 5.742 15.115 13.371 54.389
prometheus/prometheus 75.85 183.019 143.550 496.143
ovh/cds 57.591 236.837 165.837 572
etcd-io/etcd 22.177 99.512 78.148 164.286
nanovms/ops 61.703 219.287 185.887 185.213
pingcap/tidb 90.240 256.510 215.930 606.740
minio/minio-go 2.457 8.757 6.652 64.204
percona/percona-server-mongodb-operator 68.671 202.708 190.284 454.454
jesseduffield/lazygit 5.616 17.229 16.502 81
Average 39.4468 125.7352 103.4119 272.268

TABLE II
EVALUATION OF SIZES OF 10 PROJECTS

Project (https://github.com/*) Size of the project
(LOC)

Size of the
generated IR (MB)

taskctl/taskctl 4621 73
pdfcpu/pdfcpu 53076 65
prometheus/prometheus 109681 873
ovh/cds 208697 1126
etcd-io/etcd 183098 284
nanovms/ops 24103 541
pingcap/tidb 555626 2867
minio/minio-go 28973 59
percona/percona-server-mongodb-operator 1144191 2764
jesseduffield/lazygit 294705 103

TABLE III
TIME ABOUT DIFFERENT PHASES OF ANALYSIS IN SVENG

Project (https://github.com/*) Call graph
building time (ms)

Preliminary
phase time (ms)

Main phase
time (ms) DFA time (ms) Total functions

analysis time (ms)
taskctl/taskctl 395 1787 46795 12508 336774
pdfcpu/pdfcpu 397 3109 47435 17180 344566
percona/percona-server-mongodb-operator 1787 20938 409832 97537 3091962
ovh/cds 2675 21748 538028 159094 4123749
prometheus/prometheus 2579 18005 469273 119428 3519939
etcd-io/etcd 1186 7449 151237 49282 1092232
nanovms/ops 1991 13191 164581 80513 1120748
pingcap/tidb 2493 46644 551050 221955 4183761
minio/minio-go 345 2494 58166 23398 265072
jesseduffield/lazygit 695 3541 61499 24625 556091
Average 1454 13891 249393 80552 1863489

Appendix B
Kubernetes

The data is for Ubuntu 20.04, RAM: 32 GB, CPU: Intel
Core i7-7700 3.60GHZ.

TABLE IV
EVALUATION OF BUILD AND ANALYSIS TIME OF KUBERNETES

Project Kubrnetes
Original build time (s) 54.684
SVACE build time with GOA (s) 455.436
SVACE build time without GOA (s) 429.435
SVENG analysis time (s) 870.127
Size of the project (LOC) 1 954 270
Size of the project with dependencies (LOC) 3 726 378
Size of the generated IR (MB) 3276

TABLE V
TIME ABOUT DIFFERENT PHASES OF ANALYSIS IN SVENG OF

KUBERNETES

Project Kubernetes
Call graph building time (s) 4.695
Preliminary phase time (s) 3.412
Main phase time (s) 845.127
DFA time (s) 252.659
Total functions analyzing time (s) 6733.555

TABLE VI
EVALUATION OF BUILD AND ANALYSIS TIME OF KUBERNETES WITH AND

WITHOUT VENDOR

Project Without vendor With vendor
SVACE build time (s) 240 455.436
SVACE analysis time (s) 103 870.127
Count of warnings 1521 12425

disappeared 2 FP
Analysis disappeared 4 TP

disappeared 6 WF

