
ISSN 0361-7688, Programming and Computer Software, 2021, Vol. 47, No. 5, pp. 344–352. © Pleiades Publishing, Ltd., 2021.
Russian Text © The Author(s), 2021, published in Programmirovanie, 2021, Vol. 47, No. 5.
Interprocedural Static Analysis
for Finding Bugs in Go Programs

I. V. Bolotnikova,b,* and A. E. Borodina,**
a Ivannikov Institute for System Programming, Russian Academy of Sciences,

ul. Solzhenitsyna 25, Moscow, 119333 Russia
b Moscow State University, Moscow, 119991 Russia

*e-mail: igor.bolotnikov@ispras.ru
**e-mail: alexey.borodin@ispras.ru

Received April 12, 2021; revised April 21, 2021; accepted May 11, 2021

Abstract—In recent years, the popularity of the Go programming language has been growing. However, cur-
rently, there are only lightweight static analyzers (linters) available for Go. We fill this gap by adapting the
Svace static analyzer for Go programs. We implement an interprocedural and intermodular static analyzer
that possesses both f low sensitivity and path sensitivity. To evaluate its performance, we use ten open source
projects. The sixteen evaluated checkers emitted 6817 warnings with 76% true positive rate.

DOI: 10.1134/S0361768821050030

1. INTRODUCTION
Go is a compiled, strongly typed, multithreaded

programming language created by Google in 2009.
It is used mostly in the backend of web applications
[1], which did not prevent it from getting into the top
20 of most popular programming languages at the time
of writing this paper [2, 3].

The developers of this language tried to protect it,
to the maximum extent possible, from common errors
made by programmers. The language does not support
implicit typecasting. All variables are initialized to zero
by default, buffer overflow does not lead to vulnerabil-
ities, and garbage collector is implemented to prevent
the majority of memory leak cases.

The Go compiler searches for common trivial errors,
e.g., declaration of an unused variable. An important
advantage of Go is its high compilation speed because,
when designing a compiler, the build speed and quality
of optimizations, rather than bug detection, come first.
Hence, it still requires additional static analysis.

In order not to overload the compiler, the language
developers implemented an open static analyzer called
go vet, the intermediate representation of which is the
abstract syntax tree (AST) of the Go language. At the time
of writing this paper, it supported warnings of 21 types.
Below are some of them:

• copylocks: locks erroneously passed by value;
• nilfunc: useless comparisons against nil;
• printf: inconsistency of format strings and argu-

ments;
• unusedresult: unused results of calls.

There are also several similar analyzers (linters):
staticcheck [4], go-critic [5], and errcheck [6].

In this paper, we propose a static analyzer for Go
that supports deep interprocedural semantic analysis.
All Go analyzers mentioned above do not possess this
property.

To solve this problem, we extend the capabilities of
Svace, a static analyzer developed at the Ivannikov
Institute for System Programming of the Russian
Academy of Sciences [7–10]. This analyzer was origi-
nally created for C/C++ programs and then was
extended to programs in Java [11] and Kotlin.

2. SVACE ANALYZER

This analyzer is designed to detect as many bugs as
possible with an acceptable level of false positives. The
interprocedural and intermodular analysis is sum-
mary-based and context-sensitive. The analysis takes
into account aliases and values of variables, as well as
models the contents of fields in structures and ele-
ments of arrays. The implemented checkers are aimed
at detection of errors, including null pointer derefer-
ence, array overflow, resource leaks, infinite loops,
and unsafe use of external data.

Below is a typical scheme of analysis.
1. As input, the analyzer receives source code and a

build script.
2. A special build-capture component intercepts

compilation commands.
344

INTERPROCEDURAL STATIC ANALYSIS 345

Fig. 1. Analysis scheme.

Source code Build process Build capture

SsadumpSvace Engine

History server

Goa (AST)

Warnings

Warnings

Go IR
3. The modified compiler constructs an AST,
which is input to the AST analyzer.

4. The modified compiler also generates an inter-
mediate representation of the program for subsequent
analysis.

5. The intermediate representation is fed to the
SvEng analyzer (Svace Engine is the main Svace ana-
lyzer).

To make the analyzer capable of processing Go
programs, the following steps were carried out.

• The build capture procedure was modified by
extending the build-capture component. Only cases
for direct compilation by Go compiler calls were
implemented.

• A Go intermediate representation, quite similar
to the intermediate representation of the analyzer, was
selected. Its generator and parser were implemented.
The intermediate representation of the analyzer was
extended.

• In the framework of SvEng, some unique analy-
ses for Go were written.

Figure 1 shows the analysis scheme developed for
Go. Generally, to generate an intermediate represen-
tation, a compiler is used. For Go, we managed to
avoid modifying the compiler, which is not only a
complex procedure, but it also implies expensive sup-
port. Instead of the compiler, the ssadump utility was
used, which is described in Section 3.2. This utility
generates the intermediate representation and also
runs the AST analyzer called goa. The SvEng utility
carries out interprocedural analysis for the generated
representation.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
3. INTERMEDIATE REPRESENTATION

3.1. Svace IR

Svace IR is the intermediate representation of the
SvEng parser, which allows one to analyze programs in
different programming languages with the same ana-
lyzer. Svace IR has the following specific features: it is
similar to the intermediate representation of LLVM
and it is in the partial SSA form. Its more detailed
description can be found in [12, pp. 32–41].

3.2. Go Intermediate Representation for Svace

As an intermediate representation, we chose the
SSA representation of the ssadump tool, which is open
source and included with the main auxiliary tools for
Go in the set of packages golang.org/x/tools.
This choice was due to the similarity of this intermedi-
ate representation to Svace IR. As the format for IR
generation, we chose JSON due to the ease of its
implementation, support, and (most importantly)
debugging and readability. This format is not optimal
in terms of generation/reading rate and memory con-
sumption; if necessary, it can be changed.

The JSON IR generator was implemented in ssad-
ump. The parser was implemented on the side of the
analyzer. Instruction mapping from one intermediate
representation to another is carried out in two steps.
The instructions that have their counterparts in Svace
IR are mapped directly. These are basic operations
implemented in the majority of languages, e.g., logical
operators, arithmetic operators, calls, jumps, etc.
However, the intermediate representation of ssadump
includes language-specific instructions:

• defer: implements deferred function calls;
• go: runs a goroutine with a specified function;
47 No. 5 2021

346 BOLOTNIKOV, BORODIN
• typeassert: implements typecasting in a separate
instruction with two variants:

– strict typecasting: the instruction returns a single
result if successful, otherwise causing an execution
error,

– nonstrict typecasting: the instruction returns two
values (the first value is the typecasting result, while
the second value indicates whether the typecasting was
successful); in the case of a failure, the first value can
be any garbage value;

• extract: extracts an element of a tuple;
• select and send: instructions for working with Go

channels;
• makeClosure: creates a lambda object, based on

a specified function and enumerated variables from
the environment of a call point;

• calls of built-in functions that have special status
in Go (append, len, copy, etc.);

• make*: creates various objects of built-in non-
basic types;

• mapUpdate: inserts a pair into map;
• lookup: accesses an element of a string and map

with key check;
• range and next: implement integration over Go

collections (map, slice, array, string, and channel).
All ssadump instructions listed above were added

as Svace IR instructions or as specifications (builtin
and make*) (see Section 5.2).

The set of Svace IR types was also extended:
• tuple: this type implicitly occurs in Go when a

function returns several values at once that can have
different types;

• slice: built-in type for dynamic arrays;
• map: built-in type for mapping;
• chan: Go channel for communication between

goroutines (it is most similar to pipe in C);
• Go interface: type that defines a set of functions

to be implemented by another type; it does not require
explicit description of implements; duck typing.

4. BUILD CAPTURE
The capture process executes the original build

command while instrumenting it in such a way as to
intercept all running processes and capture the desired
build commands. In this case, these are calls of the Go
compiler; however, the process can be extended to
other build tools. In this case, it is important not to
affect the original build: the results must coincide with
the build carried out without external interference.
A detailed description of the build capture process can
be found in [13].

If, during the build, it turns out that a command for
compiling some set of packages has been executed,
then a script is run in parallel; this script finds depen-
PROGRAMMING A
dency packages, filters the resulting collection, and
runs a modified version of ssadump for the remaining
packages, which yields information about the inter-
mediate representation of the remaining packages.
The filter has several settings. The packages for which
the intermediate representation has already been built
are discarded first. For this purpose, before running
ssadump, a lock file is created in the file system for
each package. It is unique for the next parameter set:
the name of a package and the name of a working
directory are created; the latter is required to take into
account commands like replace in the case of using
Go modules.

An additional filtering is carried out when Go ven-
doring is used, which is a compilation mode where
some dependencies are fixed. This code is stored sep-
arately from the rest of the source code, it is rarely
updated and is not a user-defined code. In this case,
the build tool is supplemented with an option that
allows one to ignore dependencies in vendor, which
speeds up the build and analysis of the remaining
code; however, this limits the depth of the analysis,
which can affect the quality of warnings.

The unit of analysis is a package (rather than a file)
because ssadump originally operates with data at the
package level. All information is collected for the
package, and there is no need for its additional split-
ting into files. In the case of the AST for Go, the tree
is constructed for each file individually and, in its orig-
inal form, it contains incomplete information even
about types of used variables. In other analyzers, this
problem is solved by a similar auxiliary analysis on a
set of ASTs associated with the same package. For the
same reasons, goa also analyzes an AST with addi-
tional information about packages (rather than a pure
AST); the process of collecting this information does
not reduce performance because it is used to generate
the intermediate representation for the Svace analyzer.

As a result, depending on arguments, ssadump
generates the following data for each package.

File with the intermediate representation. A JSON
file with a type table, symbol table, and intermediate
representation of functions for one package. It is
required to construct Svace IR.

File with the call graph. It is required to construct
the call graph in Svace. For the other programming
languages, the call graph is constructed by standard
reading of IR files. For Go, the intermediate represen-
tation was designed from scratch. With the analyzer
implementing the call graph reading phase, a separate
file with the call graph is created for optimization pur-
poses.

Files that describe the location of declarations and
uses of variables, types, and functions in CSV format,
which are required for more convenient interaction
ND COMPUTER SOFTWARE Vol. 47 No. 5 2021

INTERPROCEDURAL STATIC ANALYSIS 347
between the user and the web interface of issued warn-
ings.

File with goa warnings. The analysis of the AST
requires a certain amount of information collected
during the build. Hence, it is more reasonable (in
terms of time) to perform it immediately after the build
in the same process because goa is implemented in the
same language (Go) as ssadump.

5. EXTENSION OF THE ANALYZER

5.1. Brief Description

The SvEng tool uses summary-based interproce-
dural analysis. First, the call graph is constructed;
then, the functions are traversed in such a way that the
callee functions are analyzed before the caller func-
tions. The loops in the call graph are forcedly broken.
Once the call graph is constructed, a preliminary
flow-insensitive phase is carried out, during which
information about callee functions and constants used
is collected.

Once the function is analyzed, its summary is cre-
ated, which is then used to analyze function calls. For
each function, an analysis based on symbolic execu-
tion with union of states at path merge points is carried
out. The analysis models values of variables, structure
fields, arrays elements, and memory cells that can be
reached by dereferences and calls. To describe proper-
ties, attributes shared among different checkers are
used. Currently, there are more than 350 attributes
implemented.

To enable path sensitivity, formulas that describe
error conditions are constructed; when the checker
can issue a warning, an SMT solver is run to check the
satisfiability of the formula.

5.2. Specifications

To model library functions, Svace uses specifica-
tions. A specification describes the behavior of a func-
tion: it is another definition of the function in a given
language. Specifications can contain calls of special
functions that are completely undefined but have spe-
cial semantics for the analyzer. Specifications are ana-
lyzed in the same way as all other functions; as a result,
a summary is created, which is then used to analyze
function calls. Svace includes specifications for popu-
lar libraries; user specifications can also be added.

We wrote over 170 specifications for the following
packages: bytes, crypto, database, encoding, errors,
f lag, fmt, io, log, os, strconv, strings, and zap.

Go has functions built in the compiler, e.g., and
. For them, we created a file builtin.go, where

one can write specifications for predefined functions.
Thus, the behavior of these functions is not hard-

len
make
PROGRAMMING AND COMPUTER SOFTWARE Vol.
coded in the analyzer; instead, it is defined in the con-
figurable part.

Below is an example of a specification
func makemap(size interface{}) inter-
face{} {

Sf_set_trusted_sink_int(size)

var res interface{}

Sf_overwrite(&res)

return res

}

func len(v interface{}) int {

var res int

Sf_overwrite(&res)

Sf_assert_cond(res, “>=", 0)

if res != 0 {

Sf_assert_cond_ptr(v, “!=", nil)

}

Sf_pure(res, v)

return res

}

Here, special function
tells the analyzer that the parameter must not
accept data from non-trusted sources. Special func-
tion means that the result of function
depends only on its argument. Special function

 indicates that the return value is not
negative.

5.3. Modeling Go-Specific Instructions
Go has the defer instruction that pushes a func-

tion call into a stack and executes functions from this
stack when a caller function terminates. Go IR also
includes the defer instruction; however, function
calls themselves are more interesting for analysis. All
necessary logic was implemented in a plugin, which
memorizes arguments of defer and, for all memo-
rized arguments, initiates processing of the function
call statement at the exit points of a function. Thus, a
representation is emulated where all defer calls are
removed and instructions for calling the correspond-
ing functions are added at the function exit points.

Go facilitates multithreaded programming. The
goroutine allows function calls to be executed concur-
rently. Due to the built-in support, this instruction is
widely used. Svace cannot analyze functions executed
in parallel. Hence, we decided to simply f lag the call
executed in parallel and then analyze it as a common
function call. This calling behavior of the goroutine is

Sf_set_trusted_sink_int
size

Sf_pure len

Sf_assert_cond
47 No. 5 2021

348 BOLOTNIKOV, BORODIN
permissible; however, it does not exhaust all the possi-
bilities.

In Go, functions can return multiple values by
using tuples. We extended Svace IR so that all func-
tions can return multiple values. In addition, it was
required to modify a lot of handlers for return values
and summaries. A new data type—tuple—was intro-
duced; values of tuples are modeled by the existing
structured type with the corresponding fields.

5.4. Existing Checkers

For Go, we included some checkers designed for
other languages. We did not include all checkers while
focusing only on their certain subset. In most cases,
they did not require adaptation to Go code and inter-
mediate representation.

Below is the list of the included checkers.
• DEREF_AFTER_NULL: inconsistent work

with pointers; the code contains null pointer check
and dereference without null check.

• DEREF_AFTER_NULL.EX: an improved ver-
sion of DEREF_AFTER_NULL that uses an SMT
solver.

• DEREF_OF_NULL.RET.EX: a function
returns null that is then dereferenced.

• OVERFLOW_UNDER_CHECK: access to an
array by index for which there is a range check that
does not exclude array overflow.

• TAINTED_INT: use of tainted data from exter-
nal sources in critical operations.

• DIVISION_BY_ZERO.EX: “divide by zero”
error; the source is either a null constant or a null com-
parison instruction.

• DIVISION_BY_ZERO.UNDER_CHECK:
division by a figure the values of which were checked
and zero value is not excluded.

• REDUNDANT_COMPARISON.ALWAYS_
FALSE: truth check of an a priori false condition in a
conditional statement.

Below is an example of DEREF_AFTER_NULL
for the etcd project (etcd/embed/serve.go).

func (ac *accessController)

ServeHTTP(rw http.ResponseWriter, req *http.Request) {

if req != nil && req.URL != nil

&& strings.HasPrefix(req.URL.Path, “/v3beta/") {

req.URL.Path = strings.Replace(req.URL.Path,

“/v3beta/", "/v3/", 1)

}

if req.TLS == nil {

In the code, the variable is compared with zero;
then, the pointer is dereferenced when accessing the

 field. Perhaps, should be replaced with | |.
For this project, an interprocedural error involving
three functions was found.

The DEREF_OF_NULL.RET.EX checker
required significant modification mainly due to the
use of tuples in Go, which are involved in error han-
dling. A typical pattern is shown below.

func create(arg int) (*MyStruct, error) {

if arg >= 0 {

s := createImpl(arg)

return s, nil

}

return nil, errors.New(“Negative argument”)

}

Thus, the pointer is null only if is not null.
We added values of other tuple elements to the error
condition. In addition, a special procedure for han-
dling the error part of the tuple was implemented.

An attribute that has a reference to a potentially null
pointer was created. When checking the error part by
using this attribute, the information about the nullness
of the pointer is deleted.

req

.reqTLS & &

error
PROGRAMMING AND COMPUTER SOFTWARE Vol. 47 No. 5 2021

INTERPROCEDURAL STATIC ANALYSIS 349
The array overflow checkers required modeling of
the predefined function , which was carried out
using specifications (5.2).

5.5. Go-Specific Checkers
We implemented several checkers to find suspi-

cious patterns in the source code that can be useful to
Go programmers:

• UNCHECKED_TUPLE.RET: the error part of
the tuple is not checked;

• UNCHECKED_TUPLE.CHAN: a version of
UNCHECKED_TUPLE.RET for reading from a
channel;

• DEREF_OF_NULL.GLOBAL: finds the situa-
tions of using a global variable that is completely
uninitialized and, therefore, has zero value;

• INFINITE_LOOP.GOROUTINE: the use of a
function with an infinite loop as a goroutine;

• DEREF_OF_NULL.RET.GO_INTERFACE:
an incorrect null check of an interface.

In Go, tuples are often used to handle errors. The
UNCHECKED_TUPLE.RET checker issues warn-
ings in the cases where the error part of functions is
ignored:
func parse(par string) (*Res, error) {

if par == “” {

return nil, fmt.Errorf(“…”)

}

return getRes(par), nil

}

func use(para string) {

res, _ := parse(para)

//error part is ignored

res.handle() //error

}

It should be noted that this checker is interproce-
dural and path-sensitive. Hence, adding an incorrect
check does not suppress the warning.

We additionally confined UNCHECKED_TU-
PLE.CHAN to the cases where reading occurs in a
loop and a channel is transferred to the goroutine
where it is closed. This pattern is dangerous because, if
the channel is closed, then the loop becomes infinite.

The DEREF_OF_NULL.GLOBAL checker is
f low-insensitive. The warning is issued only if a global
variable is completely uninitialized. It is implemented
at the preliminary analysis phase, which follows the
construction of the call graph and precedes the main
phase. The preliminary phase successively analyzes all
instructions of all modules.

To implement INFINITE_LOOP.GOROUTINE,
the existing infinite loop checker was extended. The pre-
liminary phase collects information about the functions

len
PROGRAMMING AND COMPUTER SOFTWARE Vol.
executed as goroutine. If infinite loops are found in
these functions, then INFINITE_LOOP.GOROU-
TINE issues a warning.

In Go, the interface contains information about
the value and type of a pointer. Null check of the inter-
face does not imply that the captured value is not null
and can be dereferenced. This can lead to unobvious
errors:
var data *byte

var in interface{}

fmt.Println(data,data == nil)

//prints: <nil> true

fmt.Println(in,in == nil)

//prints: <nil> true

in = data

fmt.Println(in,in == nil)

//prints: <nil> false

For the last , the value of variable is not
zero, even though a null pointer is assigned to it.

To prevent such errors, we implemented two versions
of DEREF_OF_NULL.RET.GO_INTERFACE. The
first version issues warnings if the pointer that can be
null is returned from a function of the “interface”
type. The second version checks whether this returned
value is then dereferenced. Both these checkers issue
warnings only for return values of functions. We con-
sider the return value pattern to be the most dangerous
because, as a result of refactoring, the type of the
return value can change from “pointer” to “interface.”

6. AST-BASED ANALYSIS
We did not intend to replicate existing analyzers.

However, any static analyzer only benefits from AST-
based checkers. These checkers generally have a high
true positive rate and can find a lot of typos.

Based on ssadump, the static analyzer called goa1

was implemented. This analyzer is available in two ver-
sions:

• as part of ssadump: in this case, immediately
after the generation of the intermediate representa-
tion, all collected information is transferred to goa;

• standalone: goa independently tries to collect the
information provided by ssadump in the first version;
in the case of a failure, only the checkers that work
directly with the AST are run.

Goa implements warnings of the following types:
• INVARIANT_RESULT: warning about an

expression the result of which is known at the compi-
lation stage and can be replaced by a constant;

1 Abbreviated form of Go analyzer.

Println in
47 No. 5 2021

350 BOLOTNIKOV, BORODIN
• UNSAFE_TYPE_CONVERSION: warning
about arithmetic operations that permit a safer explicit
typecasting as compared to the current one, which
makes it possible to avoid type overflow;

• UNSAFE_TYPE_SWITCH: warning about the
absence of the default branch in a type-switch expres-
sion; it is desirable to explicitly declare default, even if
it is empty, thus clearly stating that the function must
not adapt to new implementations (if any) of this
interface;

• UNSAFE_TYPE_ASSERTION: warning about
the possibility of a runtime error in the typeassert
instruction;

• LOOPVAR_IN_CLOSURE: warning about a
reference—within a goroutine nested in a loop—to a
variable that may not be constant on different itera-
tions of this loop. In go vet, there is a similar warning.
However, our version has a broader approach: in addi-
tion to analyzing the last instructions of the loop,
warnings are issued for goroutine methods with
objects passed by pointers.

The INVARIANT_RESULT checker performs the
depth-first traversal of AST vertices and, for each ver-
tex, tries to successively apply certain rules, the list of
which can be quite large. For instance, a rule can
check all vertices represented by binary expressions
a b. It is definitely known at the compilation stage if
the size of type a is less than the value of operand b.

The UNSAFE_TYPE_CONVERSION checker
traverses all integer type cast expressions. If, within the
cast, there is an arithmetic expression over types of
lower bitsize, then, during the arithmetic operation,
type overflow is possible, which could not occur if
type extension were carried out before the operation.
Let us consider the following example.
func example(slice []byte) {

length := len(slice)

for {

if int(slice[0])+1 > length {

return

}

/* UNSAFE_TYPE_CONVERSION */

length -= int(slice[0] + 1)

if length == 0 {

break

}

slice = slice[slice[0]+1:]

}

}

If the value of slice[0] at the entry of the loop is 255
and len(slice) is greater than or equal to 256, then the
loop is infinite because expression int(slice[0] + 1) is
always zero due to type overflow.

The LOOPVAR_IN_CLOSURE checker per-
forms the depth-first traversal of the AST. When

�

PROGRAMMING A
encountering a loop, it starts collecting the variables
(variants) the values of which depend on the iterators
of the loop. When encountering a go or defer node, it
checks whether a callee function is anonymous and
whether it captures any external values that are vari-
ants of the current or outer loop. If it is a method for
the “pointer” type (rather than an anonymous func-
tion), then it is also checked whether the object for
which this method is called is a variant.

Below is an example of the former case
func(values []int) {

var wait sync.WaitGroup

wait.Add(len(values))

for key, value := range values {

go func() {

/* LOOPVAR_IN_CLOSURE */

fmt.Println(key, value)

wait.Done()

}()

}

wait.Wait()

}

An example of the latter case is as follows
func (v *val) MyPtrMethod() {

fmt.Println(v.String())

}

func test(values []val) {

for _, val := range values {

/* LOOPVAR_IN_CLOSURE */

defer val.MyPtrMethod()

}

}

7. RESULTS
To evaluate the results, we used ten open source

projects. Table 1 shows the following data for these
projects: size in lines of code (LOC), number of files,
LOC size including dependencies, number of files
including dependencies, and size of the intermediate
representation generated.

Table 2 contains the build time and analysis time
data for each project. The second column shows the
build capture time with running goa, while the third col-
umn shows only the build capture time. The fourth col-
umn contains the main analysis (SvEng) time, while the
fifth column contains the original build time. The
instrumented build process slows down the main build.
In the worst case, the build time is increased by a fac-
tor of 4.24 for the cds project. On average, the analysis
time is longer than the build time. The maximum
analysis time with respect to the original build time
was for the unioffice project (27.5). On average, the
build capture is 3.16 times slower than the original
ND COMPUTER SOFTWARE Vol. 47 No. 5 2021

INTERPROCEDURAL STATIC ANALYSIS 351

Table 1. Parameters of the projects

Project (https://github.com/*) Project LOC Number of files LOC with
dependencies

Number
of files with

dependencies

Size of the IR
generated (MB)

anacrolix/dht 3647 51 241540 531 25
taskctl/taskctl 4492 59 262344 562 54
unidoc/unioffice 9438 48 9438 48 289
quasilyte/go-ruleguard 11136 120 27362 203 20
percona/percona-server-mon-
godb-operator 12805 121 1080637 2923 889

nanovms/ops 17416 156 789421 2127 788
jesseduffield/lazygit 22714 153 248406 975 133
pdfcpu/pdfcpu 48703 186 58169 212 83
prometheus/prometheus 96971 331 1219480 4104 1066
ovh/cds 199302 1323 1286867 5846 1533

Table 2. Build and analysis times2

2The experiments were carried out on Ubuntu 20.04, 32 Gb RAM, Intel Core i7-7700 3.60GH.

Project (https://github.com/*) Build time with
goa (s)

Build time
without goa (s)

Main analysis
time (s)

Original build
time (s)

anacrolix/dht 26.077 21.469 16.335 13.097
taskctl/taskctl 18.398 17.987 61.524 4.432
unidoc/unioffice 38.718 33.815 329.054 11.959
quasilyte/go-ruleguard 10.139 9.745 15.675 6.477
percona/percona-server-mongodb-operator 207.338 197.267 393.428 68.578
nanovms/ops 160.655 159.805 172.399 47.506
jesseduffield/lazygit 33.314 30.287 74.635 13.753
pdfcpu/pdfcpu 15.73 14.615 50.001 5.838
prometheus/prometheus 255.099 240.48 404.897 75.85
ovh/cds 280.615 268.112 365.773 66.142
всего 1031.926 777.150 1883.721 245.367
build, the capture with goa is 4.2 times slower, and the
analysis is 7.67 times slower. The capture with the
analysis is 11.88 times slower than the original build.
We consider this an acceptable price for the opportu-
nity of finding non-trivial errors.

For the projects under analysis, 6817 warnings were
issued by 16 checkers. For each type, we manually
labeled at least 20 warnings to assess the performance
of the checkers. The results are shown in Table 3.
On average, the true positive rate was 76%. This rate is
quite high; however, we would like to improve it in the
next version of the analyzer, as well as increase the
number of covered errors.

The main source of false positives was the lack of
specifications for library functions, especially for
those that return tuples with dependent data.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
For six warnings, the corresponding error reports
were sent to the project developers. At the time of writ-
ing, three responses were received:

1. golang.org/x/text: array overrun (issue 42147),
fixed;

2. github.com/pdfcpu/pdfcpu: null pointer deref-
erence (issue 303), fixed;

3. github.com/minio/minio-go: redundant nil
pointer comparison in one code segment or erroneous
nil dereference in another segment (issue 1457),
rejected as insignificant.

8. CONCLUSIONS
As far as we know, our static analysis tool for Go

has no analogues. It is capable of finding interproce-
dural and intermodular defects with the average true
47 No. 5 2021

352 BOLOTNIKOV, BORODIN

Table 3. Performance of the checkers3

3For evaluating, we randomly selected 20 warnings (or evaluated all warnings if fewer were issued).

Checker Total TP rate

DEREF_AFTER_NULL 34 70%
DEREF_AFTER_NULL.EX 141 20%
DEREF_OF_NULL.RET.EX 1212 50%
DIVISION_BY_ZERO.EX 12 45%
DIVISION_BY_ZERO.UNDER_CHECK 7 100%
UNSAFE_TYPE_ASSERTION 1286 75%
LOOPVAR_IN_CLOSURE 11 90.9%
UNSAFE_SWITCH 1915 75%
UNSAFE_TYPE_CONVERSION 90 80%
UNSAFE_TYPE_SWITCH 269 100%
INFINITE_LOOP.GOROUTINE 10 100%
INVARIANT_RESULT 14 85.7%
OVERFLOW_UNDER_CHECK 3 100%
REDUNDANT_COMPARISON.ALWAYS_FALSE 34 85%
TAINTED_INT 3 100%
UNCHECKED_TUPLE.RET 1776 40%
positive rate of 76%. Six error reports were sent to the
developers of the corresponding open source projects.
The responses to three of them were received, and two
errors were corrected.

Any criticism and suggestions for improving the
analyzer will be welcome.

REFERENCES
1. Golang-2019 survey. https://blog.golang.org/sur-

vey2019-results. Accessed October 3, 2020.
2. PYPL. http://pypl.github.io/PYPL. Accessed October 3,

2020.
3. IEEE Spectrum’s programming languages top.

https://spectrum.ieee.org/static/interactive-the-top-pro-
gramming-languages-2019. Accessed October 3, 2020.

4. StaticCheck main page. https://staticcheck.io. Ac-
cessed October 10, 2020.

5. go-critic main page. https://github.com/go-critic/go-
critic. Accessed October 10, 2020.

6. errcheck main page. https://github.com/kisielk/err-
check. Accessed October 10, 2020.

7. Borodin, A.E. and Dudina, I.A., Intra-procedural
analysis for error detection based on symbolic execu-
tion, Tr. Inst. Sist. Program. Ross. Akad. Nauk (Proc.
Inst. Syst. Program. Russ. Acad. Sci.), 2020, vol. 32,

no. 6, pp. 87–100.
https://doi.org/10.15514/ISPRAS-2020-32(6)-7

8. Borodin, A.E. and Belevantsev, A.A., Svace static ana-
lyzer as a collection of analyzers of different levels of
complexity, Tr. Inst. Sist. Program. Ross. Akad. Nauk
(Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2015,
vol. 27, no. 2, pp. 111–134.
https://doi.org/10.15514/ISPRAS-2015-27(6)-8

9. Belevantsev, A., et al., Design and development of Sva-
ce static analyzers, Proc. Ivannikov Memorial Workshop
(IVMEM), 2018, pp. 3–9.

10. Ivannikov, V.P., Static analyzer Svace for finding de-
fects in a source program code, Program. Comput. Soft-
ware, 2014, vol. 40, no. 5, pp. 265–275.

11. Merkulov, A.P., Polyakov, S.A., and Belevantsev, A.A.,
Analyzing Java programs in the Svace tool, Tr. Inst. Sist.
Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program.
Russ. Acad. Sci.), 2017, vol. 29, no. 3.

12. Borodin, A.E., Inter-procedural context-sensitive stat-
ic analysis for error detection in the source code of pro-
grams in C and C++, Cand. Sci. (Phys.-Math.) Disser-
tation, Moscow: Inst. Syst. Program. Russ. Acad. Sci.,
2016.

13. Belevantsev, A.A., Izbyshev, A.O., and Zhurikhin, D.M.,
Organization of controlled build in the Svace static an-
alyzer, Sist. Administrator, 2017, nos. 7–8, pp. 135–139.

Translated by Yu. Kornienko
PROGRAMMING AND COMPUTER SOFTWARE Vol. 47 No. 5 2021

	1. INTRODUCTION
	2. SVACE ANALYZER
	3. INTERMEDIATE REPRESENTATION
	3.1. Svace IR
	3.2. Go Intermediate Representation for Svace

	4. BUILD CAPTURE
	5. EXTENSION OF THE ANALYZER
	5.1. Brief Description
	5.2. Specifications
	5.3. Modeling Go-Specific Instructions
	5.4. Existing Checkers
	5.5. Go-Specific Checkers

	6. AST-BASED ANALYSIS
	7. RESULTS
	8. CONCLUSIONS
	REFERENCES

		2021-09-09T11:42:42+0300
	Preflight Ticket Signature

