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Abstract—We present an interprocedural static analysis to
detect errors in the Go source code. The analysis supports most
of the language features, while the main focus of the paper is
closures and defer statements. The analysis we have developed
demonstrates good scalability and performance. It is able to
analyze a project of 1.1 million lines in 12 minutes.

Index Terms—interprocedural static analysis, symbolic execu-
tion, data flow analysis, flow-sensitive analysis, golang, closures,
defer, svace.

I. INTRODUCTION

The spread of Go language in the modern software de-
velopment has been continuously increasing during the last
years. Now it occupies 11th place in the TIOBE index [15].
Despite its popularity we are not aware of any interprocedural
static analysis tools to detect errors in the Go source code.
We have been able to find only linters for Go such as
STATICCHECK [13], GO-CRITIC [9], ERRCHECK [7].

Functions in Go are first-class citizens, which means that a
function can be assigned to a variable, passed as an argument
to another function and returned from a function.

Closure is an anonymous function that refers (i.e. captures)
free variables of its enclosing function scope.

One more Go-specific feature is defer statement. It allows
to designate a function call to execute at the time, when the
enclosing function exits (returns). In particular, the specified
function to call can be an anonymous function or a closure.
Use of defer statement may simplify significantly the logic
to release acquired resources. Use of closures to define func-
tions in defer statements is very typical and widespread in
Go projects.

Listing 1 demonstrates using a closure within the defer
statement. Variable file is the captured variable in this
example:
func checkAll(files []string) int {

for _, path := range files {
file, err := os.Create(path)
if err != nil {

return 1
}
defer func() {

file.Close()
}()

}
return 0}

Listing 1. Closure with defer

The goal of our work is to create static analysis that is able
to detect errors in Go programs and to track the semantics for
most of its features, while the main focus of the current paper
is Go closures and defer statements support.

For our analysis we use an approach similar to the one
from PREfix [5]: it is a summary-based analysis, the analysis
is heuristical: though it aims to cover most of the possible
execution paths of a procedure, it may miss some cases.

We develop our analysis within SVACE static analyzer
framework [10]. SVACE static analyzer is a tool for automatic
software defect detection in programs written in C, C++, C#,
Java, Kotlin, and Go.

II. BUILD PROCESS

SVACE workflow design consists of two stages:
1) build, which builds low-level intermediate representation

for a Go program;
2) analysis, which runs an interprocedural summary-based

analysis to detect errors.
Fig. 1 gives an overview of SVACE analysis process. During

the build stage SVACE BUILD CAPTURE tool runs the original
project build, intercepts the go command invocations and uses
the captured information about these invocations to launch the
modified SSADUMP utility for each captured module. SSAD-
UMP generates SSA-based [6] intermediate representation, and
SVENG uses it as its input data.

SSADUMP provides for each function a list of anonymous
functions and closures that it encloses. In addition, each
function has a list of captured variables, which is not empty, if
the function is an anonymous function and lexically captures
these variables in a closure.

There is a special instruction makeClosure to create a
closure in a function, which constructs a special functional
object to store a pointer to function and pointers to the captured
variables. The result of this instruction is intended for use in
call instructions to call the constructed closure.

III. ANALYSIS

A. Intermediate representation

We treat the program being analyzed as a set of procedures
(functions). The intermediate representation (IR) for a proce-
dure is a control flow graph (CFG). Instructions are the nodes
of this CFG and are one of the following:
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Figure 1. Analysis scheme

• r := alloca() — allocate memory on stack;
• pmove val, ptr — store value val into memory at

address designated by ptr;
• r := deref(ptr) — read value val from the memory

at address designated by ptr;
• r := val1 + val2 — calculate sum of values val1 and

val2;
• return val — return value val from the current func-

tion (only a single value);
• r := makeClosure(func, bindings) — create a

closure object for the function referenced by func, where
bindings are the list of pointers to the captured variables;

• r := call func(arg1, arg2 . . . argn) — call the
function or the closure object referenced by func, where
arg1 . . . argn are its arguments.

• defer func(arg1, arg2 . . . argn) — defer a call to
a function or a closure;

We represent global variables through the fields of the
special parameter global, the analysis simulates its passing
for each procedure call.

B. Intraprocedural analysis

Our intraprocedural analysis is based on symbolic execution
with state merging. Symbolic execution uses symbolic values
to model data values. Symbolic values are symbolic variables
that represent initial values of the procedure parameters, or
symbolic expressions for the results of operations on other
symbolic values and constants. State merging technique helps
to prevent path explosion.

Let R be the set of program SSA variables. Set V is the
set of symbolic values, and its subset M ⊂ V is the set of
references. References model memory locations in a program.

Let B be the set of analyzed properties. The elements of
this set have join operation defined on them that for two input
values calculates the result value describing both input values.
This operation may result in the least upper element t if B
is a semilattice. We do not require such restriction for B, but
it is desirable in most cases.

Program execution states are defined via functions val :
R ∪ M → V, alias : V → M × M, attr : V → B.

Program states are associated with CFG edges. A program
state contains information about symbolic values for SSA
variables and references (val), aliases for symbolic values
(alias), and properties for all symbolic values (attr).

An analysis step calculates for each instruction a state on its
output edge from the state on its input edge. For convenience
all the nodes of CFG have one input edge and one output
edge with the exception for split and join nodes. At split nodes
the analysis simply copies states from their input edge to the
output edges. At join nodes the analysis creates the state for
the output edge that describe all the possible states from the
input edges.

If there are no loops in an analyzed procedure, the analysis
processes each instruction only once. For loop analysis we
use a heuristic approach. First, we find strongly connected
components (SCC) of CFG. For each SCC the analysis makes
two iterations. For the output edges of an SCC the analysis
joins program states on each iteration. See [2] for more details.
Such analysis allows to traverse most of the paths in loops and
at the same time the majority of the program instructions are
visited only once. This features allows to achieve high speed
and good scalability of our intraprocedural analysis.

Our intraprocedural analysis defines transfer functions for
the IR instructions as follows:

• a = alloca(): val[a→ va] .
Here va ∈ V is a fresh variable to represent the value
of SSA variable a. This transfer function creates a state,
where a has a unique symbolic value.

• a = deref(p): The result depends on the contents of
alias(val(p)) set. There are three possible cases:

– ∅ : val[a→ va], alias[va → m]
– {x} : val[a→ vx], vx = val(x)
– X : val[a→ v], v = joinval(X)

Function joinval creates new symbolic variables
that represent properties of all joined variables.

• pmove p, a: Again, the result depends on the contents
of alias(val(p)) set. There are three possible cases:

– ∅ : val[m→ val(a)], alias[val(p)→ m]
Where m ∈ M is a fresh variable to represent the
memory reference for pointer p.

– {x} : val[x→ val(a)]
– X : val[x→ joinval(val(x), val(a)) | ∀ x ∈ X]

C. Interprocedural analysis

Our interprocedural analysis uses summary-based approach,
which we described in depth in [3]. Since the support for
closures interferes closely with the interprocedural analysis,
we highlight first its main features below to make the specific
details of closure analysis clearer further.

The summary-based analysis creates a summary for each
processed procedure. A summary models certain properties of
the procedure’s behavior. The subsequent analysis of the calls
to a processed procedure uses its generated summary.

Each detector can propagate its specific properties. For in-
terprocedural analysis it needs to define two summary-related
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operations: create summary to store the related properties
in a summary while processing a procedure exit point and
apply summary to use them at call instructions.

Summary-based analysis is context-sensitive, since the re-
sult of applying a summary depends on the call context.

A summary may use symbolic values as a part of particular
behavior properties it models. For operation apply summary
analysis framework translates these symbolic values to caller
context and matches the symbols between callee and calling
procedures.

When a summary is applied, formal arguments from the
summary are matched to actual arguments from the context.
After that other dependent values in the summary are matched
to their corresponding elements in the caller context. The rules
are the following.

Let a be an actual argument, m be a formal argument, S
be the program state at the input edge of a call instruction,
R be the summary for the called procedure, valS(a) = va,
valR(m) = vm. Then element va will be matched to the
element vm. If valS(a) does not exist, then a fresh element
will be created and updated at the output program state for
instruction. For pointed elements the rules are more complex
because aliasS returns a set of aliases. Lets valS(a) = sa,
valR(m) = dm. dm will be matched to all elements from set
sa.

Such matching is performed for all elements in the sum-
mary. For all the matched elements analysis framework notifies
the detectors. Interprocedural detectors may transfer the prop-
erties they propagate from the summary to the caller context
in accordance to their specific logic.

Note, that not all the symbolic values make sense outside
an analyzed procedure and can be potentially translated to
caller. For instance, values of local variables that are not either
written to parameters or returned from the procedure make no
sense to be translated.

As a part of summary creation implementation the analysis
framework builds the set for visible symbolic values (visible
set) and initializes it first with function parameters and return
value. Then it recursively adds symbolic values when they are
reachable by one step from any value in the set, where step
is a dereference or a shift by an offset operation.

The analysis framework triggers create summary oper-
ation at the exit point of an analyzed function and uses the
program state for it, where it removes all the properties related
to the symbolic variables that are not in visible set. Thus a
procedure summary models program execution state at proce-
dure’s exit point omitting local variables and intraprocedural
properties. At the same time a summary models side effects of
the procedure, since val we defined above denotes side effects
at each CFG edge.

The main reason to use a summary-based analysis is its
scalability, since in the case of recursive calls absence, each
procedure is processed only once. In our approach we do not
analyze call graph loops (which results from recursive calls)
in a specific way, i.e. our analysis just breaks these loops.

Nevertheless summaries can grow up to huge sizes on real
projects. At the same time a great part of the information
collected in summaries might remain unused by the subsequent
analysis, since at the moment of summary generation it is not
yet known, if a particular summary will be required in any
context. It is a downside of the summary-based approach.

We have an observation that developers tend to make their
programs as simple as possible, while the summaries of big
sizes correspond to functions with very complicated logic.
Thus, exceeding a threshold for a summary size may indicate
itself a potential problem of the corresponding function source
code. This allows us to use such a threshold without a
significant decrease of the analysis precision. The current
implementation limits summary size to 300 symbolic values.

D. Closures

Our approach for captured variables resembles the one we
use for global variables. Globals are represented through the
fields of an artificial parameter, which we name global in
our implementation. For captured variables modeling we add
one more artificial parameter to the procedure. Unlike globals,
a captured variable comes from a particular function scope, so
the fields of this new parameter differ for each closure, since
they depend on the list of the variables that are captured in
the closure’s body.

Let’s consider a simple example with a closure use:

func foo() int {
x := 10
y := 20
z := func(a int) int {

return a + x + y
} (5)
return z

}

Listing 2. Closure use

The following IR will be generated:

func foo() int {
addr_x := alloca()
addr_y := alloca()
pmove 10, addr_x
pmove 20, addr_y
closure_1 := makeClosure(anon_1, addr_x, addr_y)
z := call closure_1(5)
return z

}

func anon_1(a int, outer) int {
x := deref(outer.addr_x)
y := deref(outer.addr_y)
r := a + x + y
return r

}

Listing 3. makeClosure and call

SSA-variables addr_x and addr_y represent addresses of
local variables x and y correspondingly. Note that variables
themselves are not present in IR directly and are handled
through their addresses. Instruction makeClosure creates a
functional object closure_1 that stores addr_x, addr_y
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to reference the captured variables. The analysis propagates
the closure_1 value through the CFG, and when processing
the closure_1(5) call instruction it will add these captured
variables to the call parameter list.

In a summary-based analysis callee functions are ana-
lyzed prior to their callers. So, first, closure’s anonymous
function anon_1 will be analyzed. The IR for the closure
function provides special parameters outer.addr_x and
outer.addr_y, which are handled similarly to globals.
The analysis creates the summary that contains information
that the result value r is: r = deref(outer.addr_x)
+ deref(outer.addr_y) + a, where a is the closure
argument.

In order to apply a summary in the caller context, analysis
matches symbolic variables of the summary with the corre-
sponding expressions in the caller context:

a 5
outer.addr_x addr_x
outer.addr_y addr_y
deref(outer.addr_x) 10
deref(outer.addr_y) 20
z r

Since all the argument values to calculate r are known in
this context, the analysis calculates the value for the matching
z as z = 10 + 20 + 5.

E. Analysis of goroutines

Go provides goroutines, which are a kind of lightweight
execution threads. They aim to write efficient concurrent code
and are widely used. We haven’t implemented any concurrent
analysis and simply replace a run of goroutine by a call
instruction. This approach allows to detect some errors in
the case of goroutines use, but not any errors specific for
concurrent behaviour.

F. Analysis of defer instruction

Our analysis models defer IR instruction behavior close
to the corresponding Go defer statement semantics. It uses
an additional stack for its support. While processing a defer
instruction, the deferred function, its arguments and the related
source code location are put onto this defer-related stack.
The additional defer location is required to produce more
user-friendly messages, since the reported deferred calls may
be located far from their defer point, so it can be quite
complicated to a user to understand why a function is called
there. While visiting exit points of a procedure the analysis
extracts deferred procedures and their arguments from the
defer stack and processes the corresponding calls. The join
operation at join CFG nodes tracks defer-related stacks as
follows: first, the common bottom part of the incoming stacks
is added to the result stack, then the rest of the tops of each
incoming stack is added, while all the value duplicates are
skipped.

Our initial approach to represent the deferred call argument
values was to use the corresponding SSA variables. This

solution is not sufficient in the cases when defer appears
in a loop body. The problem is that the same SSA variable
may correspond to different symbolic values at different loop
analysis traversals. When the analysis unwinds defer stack in
this approach, it uses just the last symbolic value for each
argument, and these values are the same for different calls
deferred by the same defer statement. This fact leads to a
false positive for the code in listing 4. SVACE assigns different
symbol values to variable f and puts a call to f.Close on
the defer stack on different loop iterations. At the function exit
point two calls of f.Close are extracted from the stack and
processed. Since only one symbolic value is assigned to every
symbol SVACE emits an error on double close of a resource.

func foo(files ...string) int {
for _, fn := range files {

f, err := os.Open(fn)

if err != nil {
return 0

}

defer f.Close() // false DOUBLE_CLOSE
}

return 1
}

Listing 4. False positive with defer in loop

To fix this issue we modeled the defer semantic more pre-
cisely. The improved version adds to the defer stack symbolic
values for parameters as well. These values are used during
defer stack unwinding.

The described implementation does not emit a false positive
in the previous example and is able to find an error in the
following example, where the same value is used:

func foo(files ...string) int {
for _, fn := range files {

f, err := os.Open(fn)

if err != nil {
return 0

}
f.Close()
defer f.Close() // error DOUBLE_CLOSE

}

return 1
}

Listing 5. Error with defer in loop

Using closures in defer statements inside loops brings
issues with the captured variables similar to those with pa-
rameter values: the values of captured variables may differ at
different loop iterations. In order to support this case we put
symbolic values of captured variables to the defer stack as
well.

However even this implementation is not precise in all the
cases, in particular because it does not collect path conditions
for defer instructions. Listing 6 illustrates it. The defer stack
at the end of the function will contain two elements, both are

4



for deferred close of the same channel, so this leads to the
false positive report on double close c.

func bad(a int, c chan int) {
if a < 0 {

defer close(c) //false DOUBLE_CLOSE
}

if a > 0 {
defer close(c)

}
}

Listing 6. Unsupported case for defer

An obvious solution is to put the conditions on defer stack
too and to process these conditions while extracting deferred
calls from the stack. Nevertheless we have decided not to
complicate the current implementation, since we haven’t ob-
served any related issues while validating our analysis on real-
world projects. Moreover, our exploration of the Go projects
source code shows that defer statements rarely occur under
conditions and never twice with mutually exclusive conditions.

IV. OTHER WORKS

Paper [1] describes interprocedural taint analysis for Go
based on the Monotone framework [11]. The authors consider
most of Go language features including defer statement and
channel operator, but the analysis is limited only to simple
function calls. They also use an SSA-based representation.
Unfortunately the paper does not contain any results on real
projects including analysis quality and analysis time.

We found several linters for Go: STATICCHECK [13], GO-
CRITIC [9], ERRCHECK [7], VET [8]. VET incorporates LOOP-
CLOSURE, an AST-based detector, which checks whether an
access to a loop variable is known to escape the current loop
iteration in a call within go or defer statement. Our analyzer
has a similar detector, which is designed to detect even more
complex cases. , see [4]. VET is able to checks errors inside
closure bodies, but it has no support for interprocedural errors.

V. RESULTS

In order to evaluate the described approach we used SVACE
to analyze 8 open source projects and reviewed the produced
warning reports. Table I shows build and analysis stage time1

for these projects as well as the project sizes in lines of code
(LOC).

We did not observe any change in project-specific metrics
related to the closure usage on these projects. The improve-
ments we introduced for closure support affected analysis time
almost insignificantly. There are new true positive warnings,
as well as false positive ones; the latter are caused not by
the implementation of closure support itself, but by some
inaccuracies in the checker algorithms. In other words the
checkers are able to report true and false positive warnings
in anonymous functions and closures, which are similar to

1The environment we used: Ubuntu 20.04, RAM: 32 GB, CPU: Intel Core
i7-7700 3.60GHZ.

those that these checkers were able to report within regular
named functions previously.

Below is an example of a true positive issue de-
tected by SVACE in the project tidb [14] at file
session/session.go:

se := tmp.(*session)
...
defer func() {

if !execOption.IgnoreWarning {
if se != nil && se.GetSessionVars()
.StmtCtx.WarningCount() > 0 {

warnings := se.GetSessionVars()
.SmtCtx.GetWarnings()
s.GetSessionVars()
.StmtCtx.AppendWarnings(warnings)

}
}
/* error DEREF_AFTER_NULL */
se.sessionVars.PertitionPruneMode.
Store(prePruneMode)

}()
...

Listing 7. Error in tidb

Variable se is compared to nil and dereferenced after that
without any appropriate nil check.

We have compared the results against the previous SVACE
version, which did not have closure support [4]. Table II shows
that on average the number of warnings has slightly increased
(2.31%) and the number of analyzed functions increased on
5.45%.

Table I
EVALUATION OF BUILD AND ANALYSIS TIME

Project (https://github.com/*) LOC of the
project (.go)

SVACE
build time

SVENG
analysis
time (s)

pdfcpu/pdfcpu 53076 20.4 67
prometheus/prometheus 109681 244 742
ovh/cds 208697 120 740
etcd-io/etcd 183098 100 130
nanovms/ops 24103 53 248
pingcap/tidb 555626 76 780
percona/percona-server

-mongodb-operator 1144191 151 562

jesseduffield/lazygit 28714 52 73
Average 91 378

VI. CONCLUSION

We described a scalable interprocedural context- and flow-
sensitive static analysis for the Go language, which tracks most
of the language features and provides detectors for a variety of
program error kinds. We provided the details of our approach
to closures and defer statements support and analyzed its
impact on the analysis results. The implementation we have
developed is based on SVACE analysis framework and is able
to analyze projects like percona [12] of 1144 KLOC in
about 562 seconds.
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Table II
THE NUMBER OF WARNINGS AND ANALYZED FUNCTIONS BEFORE AND

AFTER THE CLOSURE SUPPORT

Project
(https://github.com/*)

Count of
warnings

before

Count of
warnings

after

Count of
functions

before

Count of
functions

after
pdfcpu/pdfcpu 757 760 2826 3117
prometheus/
prometheus 9584 9705 80408 84142

ovh/cds 11521 11817 73887 77459
etcd-io/etcd 3421 3644 19994 21920
nanovms/ops 3477 3603 50734 53093
pingcap/tidb 10638 10918 61712 66172
percona/percona-server

-mongodb-operator 8565 8633 43966 45580

jesseduffield/lazygit 1306 1320 7932 8593
Average 5540 5668 38326 40416
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