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Abstract—This paper is dedicated to finding taint-based errors in the source code of programs, i.e., errors
caused by unsafe use of data from external sources, which could potentially be modified by a malefactor.
The interprocedural static analyzer Svace is used as a basis. The analyzer searches for both program defects
and suspicious points where the logic of the program may be corrupted. The goal is to find as many errors as
possible at an acceptable speed and low false positive rate (<20–35%). For this purpose, Svace builds, with
the help of a modified compiler, a low-level typed intermediate representation, which is input to the main
SvEng analyzer. The analyzer constructs a call graph and then carries out summary-based analysis. In this
analysis, functions are traversed according to the call graph, starting from the leaves. Once a function is ana-
lyzed, its summary is created, which is then used to analyze call instructions. The analysis has both high speed
and good scalability. Intraprocedural analysis is based on symbolic execution with state merging at join
points. An SMT solver can be used to filter out infeasible paths for some checkers. In this case, the SMT
solver is called only if an error is suspected. The analyzer has been extended to find defects of tainted data use.
The checkers are implemented as plugins based on the source–sink scheme. The sources are calls of library
functions that receive data from the outside of the program, as well as arguments of the main function.
The sinks are accesses to arrays, uses of variables as steps or loop boundaries, and calls of functions that
require checked arguments. Checkers that cover most of possible vulnerabilities for tainted integers and
strings are implemented. To assess the coverage, the Juliet project is used. The false negative rate ranges from
46.31% to 81.17% with a small number of false positives.
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1. INTRODUCTION
This paper describes an implementation of a proce-

dure for finding taint-based errors based on the Svace
static analyzer [1–4].

The most important features of Svace are
• summary-based interprocedural analysis, whereby

functions are traversed according to the call graph, start-
ing from the leaves (each function is analyzed only
once);

• non-sound analysis: by abandoning soundness,
the analyzer improves its accuracy and performance;

• analysis in one function is based on value analy-
sis: the analyzer tracks values of variables and memory
cells and associates the majority of properties with val-
ues of variables.

Section 2 describes types of errors found by the
analyzer. Sections 3 and 4 consider the design of the
Svace static analyzer and the SvEng module, respec-
tively. Section 5 discusses the implementation of the
taint analysis, while Section 6 assesses the results on
the Juliet and Tizen 6 projects.

2. TAINTED DATA
In this paper, we consider errors caused by unsafe

use of data from external sources, which could poten-
tially be modified by a malefactor. If these data are
used without proper check, then the program has vul-
nerability.

Tainted data are data from files, user input, and
data transmitted over the network. We consider
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tainted data of two types: tainted integers and tainted
strings.

Below are the types of vulnerabilities that are due to
tainted data use.

• When accessing an array, a buffer overflow
occurs, which could allow a malefactor to seize control
of a device [5]. According to the U.S. National Vulner-
ability Database (NVD), errors of this type cause
9.49% of all vulnerabilities listed in the CWE database
in 2018 [6].

• If tainted data are used as a loop constraint, then
the loop may be executed more times than expected.
This can cause a waste of CPU time and other errors,
e.g., buffer overflow. If tainted data are used as a step
of a loop iterator, then the data can be selected in such
a way that the loop becomes infinite.

• When tainted data are used for some operations,
e.g., memory allocation, a malefactor can force a pro-
gram to allocate an excessive amount of memory.

Listing 1 illustrates vulnerabilities due to tainted
integers. To fix the buffer overflow vulnerability, it is
required to check whether the range of variable n falls
within interval [0; 99]. Safe ranges for vulnerabilities
of other types depend on the logic of a program.

Tainted strings can contain arbitrary characters or
have arbitrary length. When copying this string to a
fixed-size array, an array overflow can occur.
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 

Listing 1. Tainted integers.

char buf[100]; 

 

int n; 

scanf("%d", &n); //n is tainted  

 

// buffer overflow occurs if n is less 
than zero or greater than 99 

buf[n] = 0;  

 

//memory allocation 

char*p = (char*)malloc(n * sizeof(struct 
Fmt));  

int i = 99; 

 

while(i > 0) { 

 buf[i] = '0' + (i % 10); 

 //infinite loop occurs if n is 0 

 i -= n; 

} 
The code in Listing 2 illustrates vulnerabilities due
to tainted strings.

3. SVACE STATIC ANALYZER

Svace finds defects in source codes, including
errors that can occur at runtime and suspicious points
where program logic may be corrupted. The goal is to
find as many defects as possible at an acceptable speed
and low false positive rate.

The tool may miss real defects or yield false positive
results, which do not correspond to real defects. For a
program under analysis, no preparation is required: it
is sufficient that its source code be compilable. The
analysis time is comparable to the compile time of the
program. For large programs, it is reasonable to run
Svace during a nightly build.

The defect detection problem is undecidable [7];
i.e., it is impossible to find all errors of a certain type
in an arbitrary program without false positives. This
problem is solved by making various compromises.
One of the approaches is to find an approximate solu-
tion. There are two types of approximations.

• Approximation towards the absence of false pos-
itives. In this case, only true positive warnings are
issued; however, many defects can be missed. A typical
example is compiler errors: it is unacceptable for the
compiler to refuse processing a correct program.

• Search for all errors of a certain type. In this case,
the false positive rate can be high. The quality of anal-
ysis can be improved by significantly increasing its
runtime.

These approximations are called sound ones
because they always round off the solution to one side.
Svace does not use sound approximations, which
allows it both to speed up the analysis of programs and
to significantly improve the true positive rate.

In [8], it was stated that the sound analysis of
aliases is necessary for program optimization while
being optional for analyzers. When the authors of the
thread- and context-sensitive analysis [9, 10] removed
one step responsible for soundness, the overall time of
the analysis was significantly reduced (in one case,
from several days to several minutes).

Figure 1 illustrates possible approaches. The Y-axis
represents the percentage of detected errors, while the
X-axis represents the percentage of true positives. The
approach implemented in Svace maximizes the area of
the dotted rectangle.

This approach is quite popular and is not Svace’s
know-how. In [11], the term “soundy” was proposed
to define a generally sound analysis that abandons
soundness for some constructs.
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Listing 2. Tainted strings.

char*p = getenv("aaa"); 

 

//potential buffer overflow 

//size p may be less than 
10 

char x = p[10]; 

 

char buf[10]; 

int n = *((int*)p); 

//buffer overflow 

buf[n] = 0; 

 

Fig. 1. Approaches to defect detection.
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3.1. Architecture of Svace

To analyze a program, the analyzer needs its source
code and a build script. Svace supports defect detec-
tion for C, C++, Java, Kotlin, and Go.1

A typical analysis scheme is shown in Fig. 2. Svace
intercepts the compile and link commands [12]. Then,
a modified compiler is run to construct an abstract
syntax tree (AST), checkers are launched to find errors
on the AST, and an intermediate representation of the
program is generated for further analysis. The inter-
mediate representation is input to the SvEng ana-
lyzer,2 which carries out interprocedural analysis.

AST-based analyzers traverse the AST nodes and
carry out relatively simple rule checks. The AST ana-
lyzers can be used to find suspicious patterns in parse
trees and various typos; at the same time,

• it is difficult to trace dependences between vari-
ables,

• it is difficult to analyze pointers, and

• it is difficult to carry out interprocedural and
intermodular analysis.

Since searching for taint-based errors generally
requires analyzing the properties mentioned above, we
do not implement taint checkers at this level.

1 Svace with Go support was released in January 2021.
2 Abbreviated form of Svace Engine.
PROGRAMMING A
4. SvEng ANALYZER
4.1. General Scheme

SvEng carries out deep thread- and context-sensi-
tive interprocedural analysis. The most important fea-
tures of SvEng are as follows.

• Summary-based interprocedural analysis,
whereby functions are traversed according to the call
graph, starting from the leaves. Each function is ana-
lyzed only once. Once a function is analyzed, its sum-
mary is created, which is then used to analyze call
instructions. The summary describes the properties of
the function. The analysis preserves a balance between
its compactness and accuracy of describing the
semantics of functions.

• Non-sound analysis: by abandoning soundness,
the analyzer improves its accuracy and performance.

• Analysis within one function is based on value
analysis. The analyzer tracks values of variables and
memory cells and associates the majority of properties
with values of variables.

• All analyzes are carried out simultaneously. Each
individual checker has low computational cost.

SvEng is designed to detect defects of various types:
null pointer dereference, unreachable code, buffer
overflow, memory and resource leaks, improper use of
library functions, and double mutex lock.

We implement the procedure for finding taint vul-
nerabilities in such a way as to take full advantage of
the analyzer’s capabilities. Checkers are implemented
as plugins based on the source–sink scheme, where
the sources are functions that return tainted data and
ND COMPUTER SOFTWARE  Vol. 47  No. 6  2021
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Fig. 2. Analysis scheme.
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the sinks are operations in which these data must be
checked before use. The analyzer is good at detecting
errors when the source and sink are not very distant
from one another in the call graph.

The analysis is carried out based on the following
scheme:

(1) files with intermediate representation are input
to the analyzer;

(2) a call graph is constructed;

(3) a preliminary phase (where lightweight analyzes
are available) is carried out; during this phase, among
other things, information about function pointers and
virtual calls is collected;

(4) the call graph is completed for virtual functions
and calls by pointers;

(5) a main phase is carried out.

4.2. Intermediate Representation
The analyzer uses its own intermediate representa-

tion (Svace IR), which is built upon launching the
analyzer. The analyzer receives input files in the fol-
lowing formats depending on the language:

• LLVM files for C/C++;

• Java bytecode for Java/Kotlin;

• JSON format for Go.

Upon converting the source code of a program to
the Svace IR, the analysis for all programming lan-
guages is carried out in the same manner.

The Svace IR is a low-level typed language in SSA
form. The language has procedures and can call them
by pointers. To model virtual calls in C++, virtual
tables are explicitly constructed. To model exceptions,
the goto statement is used.

Listing 3 contains an example of C code, with the
corresponding Svace IR snippet shown in Listing 4.

The use of the low-level intermediate representa-
tion has both pros and cons. The disadvantages are as
follows:
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
• the analysis of high-level constructs is compli-
cated;

• there is no information about original syntactic
constructs;

• transformation of the representation into an
equivalent one by the compiler.

The main advantage is the simplicity of the analy-
sis. The semantics is accurately modeled by the com-
piler; the language has a small number of instructions,
which rarely change. A significant number of language
constructs are syntactic sugar (exceptions, construc-
tors and destructors, loops, etc.), which does not
require adding new instructions to the intermediate
representation.

The low-level intermediate representation seems to
be a good choice for taint analysis because, for taint-
based defects, the very possibility of exploiting the vul-
nerability, which does not change when switching to a
low-level language, is important. In this case, analysis
of syntactic constructs is not very useful.

4.3. Interprocedural Analysis

We employ summary-based interprocedural analysis.

In this case, a summary (short description of func-
tion’s behavior) is generated for each function. The
summary is used to analyze the function call statement
and allows one to avoid re-analyzing the body of the
function. The summary is created upon analyzing the
function.

Figure 3 shows a call graph for two programs.
At the top of the graph are the main functions, which
call other functions. Functions h and j are the leaves of
the call graph; the analysis starts from the leaves. Once
they are analyzed, their summaries become available,
and the analysis can proceed to function foo.

The analysis has both high speed and good scalabil-
ity. The latter is achieved due to the fact that the sum-
mary is quite compact and does not include all details
of the function’s behavior. The size of the summary
can be limited. In this case, the summary does not
describe all effects of a function call; however, the time
of analyzing the function call becomes constant.

Due to its advantages, this approach is quite popu-
lar and is implemented in many static analysis tools:
Prefix [13], Saturn [14], Calysto [15], and CSharp-
Checker [16].

4.4. Preliminary Phase

When using summary-based analysis only, each
function is traversed a limited number of times. At the
same time, certain analyzes require information about
the entire program or about functions that have higher
positions in the call graph.
47  No. 6  2021



470 BORODIN et al.

Listing 3. C code.

{

*p;

}

Fig. 3. Example of a call graph.
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bar printf
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main´
To obtain this information, the preliminary phase
is designed, which includes analyzes of the following
types:

• analysis of value assignments to function pointers;

• analysis of virtual table fills for С++;

• analysis of class hierarchy for Java;

• value analysis of global variables.

As input, these analyses receive information about
global variables and instructions for each function.
The analysis is carried out in parallel for different
modules.

It does not take into account the order of these
instructions; however, the dominant instruction is
always analyzed first. Thread-insensitive analysis is
chosen so as not to slow down the main analysis too
much, because the main properties are processed
during the main phase.

The purpose of these analyses is to obtain the nec-
essary information without wasting a significant
amount of time.
PROGRAMMING A
4.5. Devirtualization
Devirtualization is aimed at enabling procedure

calls for function pointers and virtual tables. A virtual
function table is a global variable of structure type with
a field, i.e., an array that contains pointers to virtual
functions accessed through constant values.

The analysis tracks values of variables, structures,
and constant array indices.

For each pointer, all possible records are collected.
The result of the analysis for each function–pointer
pair is a set of callee functions or an empty set if the
analysis could not find any candidates.

The analysis results are used in two ways:

• to complete the call graph by adding edges and

• to process call-by-pointer instructions.

The summary-based analysis needs information
about the call graph. Therefore, upon receiving infor-
mation about virtual functions, the call graph is com-
pleted. This procedure is simple: it is sufficient to add
an edge where a function may be called as a result of a
virtual call. When analyzing the function during the
main phase, in some cases, this information can be
updated. A more accurate analysis in the preliminary
phase adds fewer extra edges. As long as the main anal-
ysis is able to remove extra edges, they do not affect its
accuracy. However, the time of the analysis, as well as
memory consumption, can increase because each
edge in the call graph imposes certain constraints on a
possible traversal of functions and requires a summary.

The main analyzer implements a plugin that tracks
possible candidates for each pointer. This plugin
retrieves data about candidates for each pointer; then,
ND COMPUTER SOFTWARE  Vol. 47  No. 6  2021
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Listing 4. Svace IR code.

{

}

using thread-sensitive analysis, it propagates these
data independently within the procedure. In some
cases, using information about values of variables and
unreachable instructions, the analysis can obtain more
accurate information than that available after the pre-
liminary phase.

In the case where there are several candidates for a
pointer, their conditional call is modeled. For each
candidate, a summary is applied; then a union occurs
for each context of use. Thus, each summary is applied
individually for each context.

4.6. Intraprocedural Analysis

Individual functions are analyzed by symbolic exe-
cution with state merging at join points. For a func-
tion, a control-flow graph is constructed, and the
analysis traverses the graph. Abstract states are associ-
ated with the edges of the graph. At each step, an
abstract state on the outgoing edge is generated based
on an abstract state on the incoming edges.

For strongly connected components (SCCs), sev-
eral iterations are performed. Abstract states for the
outgoing edges of SCCs are saved after each iteration.
Once SCCs are analyzed, these states are merged. The
analysis uses several heuristics to model all possible
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
paths of the SCC execution. In some cases, the mod-
eling can be incorrect due to the misbehavior of these
heuristics.

All additional analyses and checkers run simulta-
neously, which reduces both analysis time and mem-
ory consumption. The analysis time is reduced due to
the fact that the properties common to all checkers are
analyzed only once. The memory consumption is
reduced because, in most cases, once an instruction is
analyzed, the analysis state on the incoming edge can
be deleted.

To model values of variables and memory cells,
Svace uses a special abstraction called the value iden-
tifier. Two variables are assigned one value identifier if
these variables have the same values at runtime (the
value numbering problem is solved).

The majority of properties are associated with value
identifiers. The properties themselves can also be
described using value identifiers. To describe proper-
ties, attributes are used. An attribute defines a property
under analysis.

Below are some examples of attributes:

• Null: a pointer has a null value;

• ValueInterval: the values of an integer variable
fall within interval [a; b];

• PointsTo: a pointer points to memory cells from
a set (memory cells are defined by value identifiers,
which model addresses of memory cells);

• Ness: necessary conditions for reaching an edge
in the control f low graph; it is a Boolean formula
where value identifiers are used as variables.

4.7. Using the SMT Solver

To implement path sensitivity, Svace uses condi-
tional attributes, the properties of which are repre-
sented as Boolean formulas over value identifiers.
Conditional attributes that describe properties of val-
ues of variables are associated with value identifiers.

The formulas are shown in Fig. 4, where Val are
value identifiers and Const are constants. Each literal
formula (Atom) has a negation statement, which
returns a different literal formula. The formulas can
use conjunctions, disjunctions from other formulas,
and negation for literals.

The SMT solver is run only before issuing a warn-
ing to filter out infeasible paths. Therefore, the num-
ber of SMT runs does not exceed the number of unfil-
tered warnings. In the general case, the following for-
mula is used:

where Ness is the necessary reachability condition for

edge i and  is the error condition for the

value modeled by identifier .

∧ v, ,( ),iNess Error

v,( )iError
v
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Table 1. False positive rate for Tizen 6

Warning Number of issued warnings True positive rate

TAINTED_ARRAY_INDEX 102 62.5

TAINTED_INT 137 65.5

TAINTED_INT.LOOP 137 76

TAINTED_INT.PTR 82 58

TAINTED_PTR 242 70.5

TAINTED.INT_OVERFLOW 796 85
4.8. Data-Flow Analysis
To analyze an unreachable code, sound data-flow

analysis (DFA)3 was implemented [17]. It is carried
out before analyzing each function in the main phase.
The analysis labels unreachable edges in the control-
flow graph. The main reason for its implementation
was an insufficient accuracy of the main analysis.
An unreachable edge strongly affects all other analy-
ses, which is why, in this case, non-soundness can lead
to significantly worse results.

Later, the following analyzes were added:

• interval analysis;

• exception analysis;

• live variable analysis.

In addition to sound results, this analysis provides
information about a function before initiating the
main analysis. With all checkers in the main phase
running simultaneously, the problem of preliminary
acquisition of properties arises, which is solved by the
DFA.

4.9. Top-Down Analysis in the Preliminary Phase
Let us consider an example shown in Listing 5.

Function f receives tainted data and passes them to
function g. If function g uses its argument unsafely,
then a warning must be reported. For this purpose, in
the summary-based analysis, the information about
the unsafe use of argument y needs to be propagated
through the summary.

In the general case, this is not a trivial task. When
analyzing function g, there is no information about the
contexts of its further use. That is why it is not known
whether the information about the unsafe use needs to
be stored. The summary is compact, and storing all
possible information deprives the analysis of its main
advantages.

To solve the problem described above, we supple-
ment the preliminary phase with the DFA. In this

3 In this paper, by the DFA, we mean an engine based on data-
flow analysis.
PROGRAMMING A
phase, procedures are traversed in arbitrary order;
tainted data are tracked in the context of a procedure
and, for each procedure call in that context, tainted
arguments are saved. Thus, the saved information is
associated only with the contexts considered.

This approach is somewhat similar to dynamic
analysis, whereby the properties of a particular path
are investigated with all conclusions being valid only
for this path. This analysis investigates properties that
are not universal and hold for a certain call context or
chain of function calls.

Thus, the preliminary phase gathers information
about contexts of use for functions. Data about tainted
arguments of functions are used during the main anal-
ysis. Attributes that describe tainted data are set based
on the results of the preliminary phase. For particular
checkers, it looks like an argument is a result of calling
a function that returns tainted data. In this case, the
problem is that the information about tainted data can
get into a summary, which is not desirable. The sum-
mary describes the result of a function call for an arbi-
trary call context, while the preliminary analysis gath-
ers data for certain contexts. We use the following
method to solve this problem. A function that has
tainted arguments (according to the preliminary tra-
versal) is analyzed twice:

(1) the data from the preliminary traversal are used,
and the summary is not created;

(2) the standard analysis without using the data
from the preliminary traversal is carried out, and the
summary is created.

For instance, if it is known that function input is
always a source of tainted data, then, when analyzing
function f, we can conclude that there is a call context
for g in which its argument has a tainted value. Thus,
it is correct to report an error. The main phase makes
a decision based only on the analysis of function g.

4.10. Specifications in Svace
Specifications are used to analyze library functions

the behavior of which is known. A specification in
Svace is another definition of a function, which is
ND COMPUTER SOFTWARE  Vol. 47  No. 6  2021
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Fig. 4. Formulas used.

Op ::= Val | Const

Atom ::= True | False | Op      Op | Op = Op ! Op

! ::= +| − | * | /

     ::= > | < | = | ≠ | # |  $

Conj = Atom | Conj ∧ Conj

CFormula ::= Conj

SFormula ::= Conj ∧ Conj

FFormula ::= Atom | FFormula ∧ FFormula | FFormula ∨ FFormula
written in a language under analysis. The specification
describes the behavior of a function in a compact
form. In addition to language constructs, specifica-
tions can contain calls of certain predefined functions
called special functions.

The distributive of Svace contains specifications for
popular libraries. Users can add their own specifica-
tions.

For example, let us consider the specification of
the strcat function from the standard C library.
Below is the source code of this specification.

char *strcat(char *s, const char *ap-
pend) {

char d1 = *s;

char d2 = *append;

sf_set_trusted_sink_ptr(s);

sf_set_trusted_sink_ptr(append);

sf_append_string(s, append);

sf_vulnerable_fun(“This function
is unsafe, use strncat instead.”);

sf_null_terminated(s);

return s;

}

This code contains the following special functions:

• void sf_set_trusted_sink_ptr(const
void* str shows that its argument str must be from
a trusted source; otherwise, the pointer can cause vul-
nerability;

• void sf_vulnerable_fun(const
char*const reason) shows that the current func-
tion is not safe and has safe counterparts;

• void sf_append_string(char* dst,
const char* src) shows that string src has been
added to dst;

• void sf_null_terminated(char *p)
shows that string p ends with a null character.

When analyzing this specification, checkers can
extract the following properties:

strings s and append have been dereferenced,
which can be useful for checkers that search for null
pointer dereferences;

strings s and append must be from a trusted
source (this information is used by taint checkers);
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
function strncat is vulnerable and its safe coun-
terpart strncat should be used instead;

string s ends with a null character.

5. TAINT CHECKERS IN SvEng

5.1. Plugins and Checkers
Analysis in SvEng is divided into the core and

plugins. The core analysis tracks the pointer graph,

executes strong or weak updates of memory cells, and

calls handlers of the corresponding situations. All

additional analyses are implemented in plugins as

instruction handlers, which operate with value identi-

fiers rather than variables. As input, additional analy-

ses receive an abstract state on the incoming edge of an

instruction and form an abstract state on its outgoing

edge. Checkers are also implemented as plugins and

report warnings based on input abstract states and

transfer functions of instructions to be processed.

Information on the incoming edges is available to all

additional analyses, whereas information on the outgo-

ing edges is not. Different analyses and checkers must

not interfere with each other in the process of instruc-

tion analysis. In the current version, analyzers and

checkers are run in succession; 4 however, the results

should be the same as if they were run in parallel.

In an abstract state, attributes are used to describe

properties. Attributes can be associated with value

identifiers and with edges of the control f low graph for

certain abstract states. An attribute defines a property

under analysis. Attributes must have a function that

merges two attributes . This function is used for state

merging. Attributes allow abstract states to be shared

among additional analyzes.

An attribute can have an arbitrary structure, while

attributes of certain types are used quite often. The fol-

lowing types can be distinguished:

• binary attributes;

• ternary attributes;

• interval attributes;

• conditional attributes;

• a set of value identifiers.

Each type can also have a trace: a single linked list

of pairs “program point–short text description of an

event.” Traces change in the process of attribute prop-

agation and are used when reporting warnings to indi-

cate additional points in a program that provide better

understanding of an error.

4 Parallel run of checkers can potentially speed up the analysis;
however, it significantly complicates the intraprocedural analy-
sis due to the need for synchronization. That is why paralleliza-
tion is implemented at the level of the call graph: individual
functions can be analyzed in parallel, while the analysis within a
function is sequential.

�
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Listing 5. Motivation for the preliminary phase.

void f() { 

  int x = input(); 

  g(x); // the tainted value was passed 

} 

 

void g(int y) { 

  // context in which tainted value 
was passed to variable y is known  

} 
Binary attributes have two values: true or false. The

true value means that some variable surely has an ana-

lyzable property, while the false value means either

that the variable does not have an analyzable property

or there is no enough information. Depending on a

merge function, these attributes can be of two types:

• or-attributes: the result is true if at least one argu-

ment is true;

• and-attributes: the result is true if both argu-

ments are true.

Ternary attributes can take the following values:

true: a property of a variable holds at a given point

for all paths5 passing through it;

maybe: there is a path, possibly an infeasible one,

for which a property holds;

false: a property does not hold or there is not

enough information.

The attribute merge function is as follows:

• true ⊔ false = maybe,

• maybe ⊔ false = maybe,

• true ⊔ maybe = maybe.

In fact, the ternary attribute is a result of merging

the binary or- and and-attributes. Its value is true if

both binary attributes are true. Its value is maybe if the

or-attribute is true and the and-attribute is not; other-

wise, the value is false.

Interval attributes associate a variable with an inte-

ger interval that describes an arbitrary property. For

instance, it can be a possible amount of memory allo-

cated to a pointer or a value an integer variable can

take. The interval can take the following values:

; a, b ∈ [MIN_INT + 1, MAX_INT – 1];

this means that the property of a variable has a value

5 In the case of static analysis, all paths that the analysis considers
feasible are taken into account. The more accurate the analysis,
the more infeasible paths it can filter out.

− ≤[ , ]a b a b
PROGRAMMING A
on the interval from a to b. Values MIN_INT and

MAX_INT are reserved for infinities  and .

A chain of intervals represents several intervals and

allows one to model intervals with excluded points.

Conditional attributes store a formula that

describes the fulfillment of a certain property (see 4.7).

The satisfiability of the formula is checked by the SMT

solver before issuing a warning. This formula consists

of the following conjunctions:

• a reachability condition: this formula contains

conditions under which a point where a warning is

reported is reachable (this formula is stored in attri-

bute );

• a taint condition: this formula contains a condi-

tion under which a pointer or a value of an integer vari-

able comes from an untrusted source; this formula is

tracked by attributes  (for an unsafe

pointer) and  (for an unsafe integer

value), which are described below;

• an additional property that depends on a

checker, e.g., to access an array, it is checked whether

the index value is less than zero or greater than the size

of the array.

5.2. Interprocedural 
Attribute Propagation

When creating a summary, the analysis core deter-

mines which value identifiers are included in the sum-

mary and calls the annotate handler for each of them.

When the summary is applied, the analysis core

matches formal arguments with actual arguments and

calls the apply handler. To make interprocedural attri-

butes, it is sufficient to subscribe to these two handlers

and implement the corresponding logic depending on

the semantics of attributes.

For ternary, binary, and interval attributes, the

summary is generated by passing properties without

modification (annotate).

For conditional attributes, the formula is simpli-

fied before being passed to the summary:

(1) add a conjunction with a reachability condition;

(2) save all atomic conditions that contain identifi-

ers added by the core to the summary in a special set;

(3) select an untraversed simple condition from the

formula: if it is not contained in the list, then convert

it to False; otherwise, label it as a traversed one;

(4) apply absorption rules ( ,
where Cond is a condition) to the resulting formula;

(5) save the result in the summary.

Hereinafter, we assume that all standard attributes

are interprocedural ones and use the summary gener-

ation mechanism described above (unless otherwise

stated).

−∞ +∞

Ness

TaintedPtrIf
TaintedIntIf

∧False Cond = False
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5.3. Used Attributes

Let us describe auxiliary attributes that provide

necessary information for taint checkers.

Attribute  stores an interval of

possible values for a tainted variable. Values from this

interval must be checked before use. The attribute

merge function is the intersection of intervals ([10,

20] ∩ ,  = [10, 11]).

Attribute  stores the maxi-

mum tainted interval. The attribute merge function is

the union with a void interval (  =

[10, 11]) and intersection with a non-void interval

.

The following attributes, which indicate whether

the value of a tainted variable has been checked, are

also associated with the value of the variable:

 is a binary or-attribute that indicates

the conduction of a lower bound check (by default, its

value is true, which means that the check has not been

carried out);

 is a binary or-attribute that indi-

cates the conduction of an upper bound check (by

default, its value is true, which means that the check

has not been carried out).

These attributes are required to avoid reporting

false positives in the case where a variable has been

compared with some function parameter:

char* allocate(int max) {

unsigned int n;

scanf(“%d”, n);

if (n > max) {

 printf (“parameter too big,
use %d”, max);

 return 0;

}

return malloc(n);

}

The attribute suppresses the issuance of warnings

in the cases where an exact safe boundary is not

known. For instance, this constraint cannot be stati-

cally defined to allocate memory from the heap. When

accessing an array with a known size, this boundary is

known, and the attribute does not affect the issuance

of warnings.

MustTaintedInterval

∅ ∅= ∩[10, 20] [10, 11]

MightTaintedInterval

∪([10, 20] [10, 11]

( )∪[10, 20] [10, 11] [10, 11]=

MinIsTainted

MaxIsTainted
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5.4. Tainted Integers
Values of integer variables can be controlled by a

malefactor. All checkers are implemented based on the
source–sink scheme, where the sources are functions
that receive data from external sources and the sinks
are operations where these data must be checked.

The sources are all data received from the outside

of a program (file, network, or user input). In most

cases, these data in Svace come from specifications.

An exception is the argc and argv parameters of the

main function. Svace links argv with argc by using

attribute , which allows checkers to avoid

false positives due to the use of the main’s parameters,

e.g., when the argv pointer is shifted using argc.

The sinks are

• use of a variable as an array index (its range must

be checked before use);

• library functions;

• use as a loop step or loop constraint;

• use as a pointer index (even though its exact size

is not known, this does not mean that any size can be

used).

A specific property of tainted integer variables is

that checking their range is quite a complex procedure

that uses binary arithmetic.

In addition, certain variables can be interrelated by

some operation; in this case, only one variable can be

checked. When implementing the analysis, it is

important to take these relationships into account. For

this purpose, the SMT solver is used: formulas are

derived to describe relationships between variables;

then, the SMT solver is called to determine whether

the formula has a model.

Svace implements the following checkers for find-

ing tainted integers:

• TAINTED_ARRAY_INDEX: access to an array

by an unchecked index;

• TAINTED.INT_OVERFLOW: a potential inte-

ger overflow;

• TAINTED_INT.PTR: access to a pointer by

shifting;

• TAINTED_INT: access to a function where its

input parameters must be checked;

• TAINTED_INT.LOOP: the use of a variable as

a loop constraint or loop step.

The checkers listed above can use the following

suffixes:

• .MIGHT: some paths to unsafe use of data do

not contain tainted data;

• .COND: the sink is in a callee function and it is

not reachable on all paths within that function.

For example, TAINTED_ARRAY_INDEX.MIGHT

is an access to an array as an index where some paths

do not contain tainted data.

ArgvVarAttr
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5.4.1. TAINTED_INT Warning

There are cases where the programmer uses a vari-

able the value of which comes from an external source
PROGRAMMING A
(e.g., in functions like strncpy and malloc) or it is

used as a loop termination condition. Since the male-

factor can pass any value, the use of these variables can

lead to vulnerabilities (infinite loop or array overflow).
void test(int fd) {

int sizeBuf;

//sizeBuf is received from an untrusted source

int ret = recv(fd, &sizeBuf, sizeof(sizeBuf), 0);

if(ret<0)

return;

if (sizeBuf < 0) {

return;

}

//use of tainted variable in calloc

char*x = calloc(1, sizeBuf);//TAINTED_INT

}

In this example, the amount of allocated memory • the lower and upper bounds of the variable have
Table 2. False negative rate for Juliet

Overall test coverage is 38.32%.

CWE
Number of 

tests
Coverage FN(%)

CWE680 384 206 46.35

CWE194 816 444 45.59

CWE195 816 444 45.59

CWE789 384 92 76.04

CWE127 240 104 56.67

CWE124 240 104 56.67

CWE126 390 104 73.33

CWE400 624 164 73.72

CWE134 1200 226 81.17

Altogether 5094 1888 62.93
depends on the tainted variable: sizeBuf can be very

large (which results in allocating an excessively large

amount of memory that will not be used) or sizeBuf
can be zero (in this case, an access to x can cause an

array overflow).

The checker detects when tainted integer variables

are passed to functions, causing vulnerability.

To identify tainted integer variables, the 

attribute is used, which stores a formula the execution

of which forces the variable to have a tainted value.

The attribute merge function is the conjunction of for-

mulas from branches.

Attribute  is used for interpro-

cedural propagation of properties that describe the use

of trusted data. In fact, when applying a summary, this

attribute creates another sink for which a warning can

be reported. It should be noted that analysis of speci-

fications is a special case of interprocedural analysis.

This attribute is used when processing specifications

for functions like malloc.

A warning is reported if,

• upon calling a function, its argument has the fol-

lowing properties: T  is true or the

variable is used in loop conditions;

• the variable has non-empty attribute

 or ;

TaintedIntIf

TrustedIntSinkFlag

rustedIntSinkFlag

MustTaintedInterval MightTaintedInterval
not been checked; attributes  and

 are false;

• the conjunction of a formula from 

is satisfiable under the condition that the variable is in

MinIsTainted
MaxIsTainted

TaintedIntIf
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an interval from  or

.

The use of  and

 is not necessary in terms of

program logic; however, it allows us to optimize que-

ries to the SMT solver.

5.4.2. TAINTED_INT.LOOP Warning

It is a subtype of TAINTED_INT for loop vulner-

abilities.

This warning is reported in the following two cases.

• A tainted value is used to limit the number of

loop iterations. The error is that the loop can have too

many iterations. To determine whether the variable

limits the number of loop iterations, information

about the control-flow graph is used. The handler of

conditional statements checks whether the statement

belongs to a strongly connected component and

whether its incoming edge is an input edge to that

component.

• A tainted value is used as a loop step. In this case,

if the malefactor manages to set a value such that the

variable remains constant on different iterations, then

an infinite loop occurs. The implementation of the

loop step detection is more complicated. At the first

stage, based on the DFA, loop invariants (variables

that have the same values at all iterations) are com-

puted. For the other variables, it is checked whether

they are used in arithmetic instructions and whether

their ranges permit undesirable values6 and condi-

tional statements that check the values of these vari-

ables.

There are cases where a variable is used in a loop in

a callee function. The analysis uses attribute

, which is set to true in the cases where

the variable is considered a constraint on the number of

loop iterations. Then, this attribute is propagated inter-

procedurally; if, at the time of applying a summary, a

formal argument has this attribute, while an actual

argument has attribute , then a

warning is issued.

5.4.3. TAINTED_INT.PTR Warning

If a tainted integer variable is used as a pointer off-

set without any checks, then allocated memory can be

exceeded because the tainted variable can have arbi-

trary value.

void test(int fd, int *ptr) {

int index;

//value of index is tainted

int ret = recv(fd, &index, sizeof(index), 0);

//use of tainted index as an offset

ptr[index] = 3;//TAINTED_INT.PTR

}

In this example, variable index can have any value,
which can cause a buffer overflow.

The checker finds situations where tainted integer

variables are not checked and are used as pointer offsets.

A warning is issued if

• a pointer access instruction is executed;

• the offset has non-void  or

;

• the lower and upper bounds of the offset have not

been checked; attributes  and Max-
IsTainted are false;

• the amount of memory allocated to the pointer is

not known or  or MightTainted-
Interval can exceed its size.

5.5.4. TAINTED_ARRAY_INDEX Warning

This warning is quite similar to TAINT-

ED_INT.PTR; the difference is that it is issued when

processing arrays the sizes of which are known to the

static analyzer.

MustTaintedInterval
MightTaintedInterval

MustTaintedInterval
MightTaintedInterval

6 Generally, it is zero. In some cases, integer overflow can also
cause an error.

LoopBoundFlag

MustTaintedInterval

MustTaintedInterval
MightTaintedInterval

MinIsTainted

MustTaintedInterval
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void test(int fd) {

int ptr [6];

int index;

//value of index came from an untrusted source

int ret = recv(fd, &index, sizeof(index), 0);

//use of tainted value as index

ptr[index] = 3;//TAINTED_ARRAY_INDEX

}

In this example, the size of array ptr is known, and
the value of index can exceed 5.

The checker finds situations where an array is
accessed by an index received from an untrusted source
and the value of this index can exceed the size of the
array. In this case, the analyzer knows the size of the
array.

For this purpose, it uses attribute BufferSizeAttrVal,
which stores a possible size of the array as an interval.

A warning is issued if

• the array is accessed by index;

• the size of the array is known; the interval from

 is not empty and not ;

• the index has non-empty 

or ;

• for the index, a formula is derived with the con-
dition that its value can exceed the interval from

; this formula is satisfiable.

5.4.5. Integer Overflow
The value of a variable that comes from an external

source can be arbitrary. If arithmetic operations with
this variable are carried out without preliminary
check, then an integer overflow can occur and its value
will be incorrect. This can lead to both vulnerabilities
and violation of program logic. In these cases, the
TAINTED.INT_OVERFLOW warning is issued.

void test(int fd) {

int ptr [6];

int index;

//value of index came from an untrusted source

int ret = recv(fd, &index, sizeof(index), 0);

//integer overflow

index += 1; //TAINTED.INT_OVERFLOW

if(index > 4) {

 return;

}

ptr[index] = 3;

}

In this example, index can have the maximum
value for the int variable; hence, with incrementation,
an integer overflow can occur and its value will be
incorrect.

The checker finds situations where a variable from
an untrusted source is used in arithmetic operations
(addition, multiplication, and subtraction). To check
the possibility of the overflow, the interval from attri-

bute  is used.

A warning is issued if

• the addition, multiplication, or subtraction
instruction is executed;

• attribute  of one of the
arguments in this instruction is not empty;

• the interval is 

or it can overflow the type of the second argument.

5.5. Tainted Strings

Sometimes, it is required that a pointer contain
checked data, e.g., when opening a file by using the
open statement or when concatenating or copying
strings. In the case of strcpy and strcat, if string
src is tainted, then its length can exceed that of string
dst, causing a buffer overflow.

BufferSizeAttrVal [ ]−∞ ∞,+

MustTaintedInterval
MightTaintedInterval

BufferSizeAttrVal

MustTaintedInterval

MustTaintedInterval

[ ]−∞ ∞MustTaintedInterval = ;+
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void test(int fd, int *ptr, int size) {

//env came from an untrusted source

char* env = getenv(“PATH”);

char *buf = malloc(size);

//string in env can have arbitrary size

//which can cause buf overflow when copying

strcpy(buf, env);//TAINTED_PTR

}

In this example, the string in env can have arbitrary
size, which can cause a buffer overflow when copying
it to buf.

The checker finds situations where an unsafe
pointer is used in functions.

To identify a tainted pointer, the following attri-
butes are used.

 stores the conditions under which the
pointer contains tainted data. This attribute is a for-
mula of propositional logic. The attribute merge func-
tion is the conjunction of formulas from branches.

 is a ternary attribute that indicates
whether the pointer contains tainted data.

Using ternary attribute , the
checker finds pointers used in unsafe functions
(open, strcpy, strcat, etc.) where a tainted
pointer can cause vulnerability.

A warning is issued if

• attribute  is true or maybe; the pointer
is surely or possibly received from an untrusted source,

• attribute  is true, the pointer
is used in a function where it can cause vulnerability,

• the formula in  is satisfiable.

There are also cases where a tainted pointer cannot
cause vulnerability, e.g., in the case of using strcpy
when it is known that there is enough memory allo-
cated for the dst string to copy the tainted src string:

void test(int fd, int *ptr, int size) {

//env contains tainted data

char* env = getenv(“PATH”);

//size of buf depends on length of string in env

char *buf = malloc(strlen(env) + 1);

//overflow is not possible

strcpy(buf, env);//TAINTED_PTR

}

In this example, there is enough memory allocated
for the buf array to copy the env string.

To filter out these situations when copying a string,
the checker recognizes the identifier that determines
the amount of memory allocated to the string; then, it
checks the lengths of which strings are contained in
this identifier: if there is a dst string among them,
then a warning is not reported. In this example,

 bytes of memory are allocated to vari-
able buf, which includes the length of the env string,
so a warning is not generated.

The situation with strcat is similar. The differ-
ence is that, when adding a new string, it is checked
whether the amount of allocated memory is sufficient
for a src string and the set of strings that constitute a
dst string.

When a tainted string is compared with some other
string by using comparison functions (strcmp), a
warning is also not reported. To identify tainted strings,

ternary attribute  is used. It taints
the variables used in string comparison functions.

6. RESULTS AND DISCUSSION

6.1. Analysis of Open Source Projects
To estimate the true positive rate, we analyzed

Tizen 6 [18], which is a Linux-based open source
operating system. The total amount of its source code
used for analysis was over 32 million lines. The results
are shown in Table 5. For analysis, at least 40 warnings
per each type of checkers were reviewed. In this case,
the exploitability of errors was not estimated. A warn-
ing was considered true if the code contained unsafe

TaintedPtrIf

TaintedPtr

TrustedPtrSinkFlag

TaintedPtr

TrustedPtrSinkFlag

TaintedPtrIf

( ( ) 1)strlen env +

SanitizationInvoked
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data transfer in critical operations; path feasibility
from program entry points was not checked.

The TAINTED.INT_OVERFLOW checker
proved quite noisy. It may need some refinement to
avoid unnecessary warnings. Most of the found cases
are represented as follows:

int count;

count = strtol(arg, NULL, base);

The strtol function returns the long type, which is
why there is a possibility of loosing a significant por-
tion of the return value.

6.2. Juliet 1.3
The Juliet project [19] is a test suite for static ana-

lyzers. It includes both f lawed cases (where the ana-
lyzer must report warnings) and correct cases (where
the analyzer must not report warnings).

From the Juliet set of error types, we took those
that can be associated with tainted data: CWE680,
CWE194, CWE195, CWE789, CWE127, CWE124,
CWE126, CWE134, and CWE400. These tests were
compiled with the omitgood option, which hides all
tests that does not contain errors. The tests use a spe-
cial naming system: the name of the test can be divided
into parts, each part carrying certain information, e.g.,
the error type or the source and sink [20]. Basic infor-
mation about the functions used in the test can be
obtained from the functional variant name. From the
resulting sample, we filtered out the following tests:

• tests compiled only for Windows; these tests con-
tain w32 and wchar in their functional variant names;

• tests that do not contain tainted data; their func-
tional variant names contain functions rand, new, etc.
(rather than tainted sources).

We measured test coverage on the resulting sample.
If one of the taint checkers report a warning in a test,
then the test was regarded as covered. All non-covered
tests were classified as false negatives. Table 2 shows
the percentage of non-covered tests.

We also measured the number of false positives on
this sample. For this purpose, the tests were compiled
with the omitbad option, which hides all tests that
contain errors. In this case, any warning was consid-
ered false. As a result, the false positive rate was insig-
nificant (0.47%).

7. CONCLUSIONS

In this paper, we have described the context- and
thread-sensitive interprocedural analysis of tainted
data that finds vulnerabilities in C, C++, Java, Kotlin,
and Go programs. The analysis uses well-known and
well-proven solutions implemented in other tools.

The unique general scheme of the analysis has been
developed based on more than 10-year experience in
static analysis. The proposed solution does not find all

vulnerabilities; however, the percentage of detected
errors exceeds 38.32% on Juliet tests.
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